The search for alternative transparent electrodes to the commonly used indium tin oxide (ITO) in optoelectronic devices has led to solution-based approaches based on inkjet printing. As an additive manufacturing technique that allows drops to be positioned only where necessary, inkjet printing shows reduced waste of starting material compared to other methods such as spin coating. As a result, functional materials can be both coated and structured without the need for masks or lithographic pre-patterning of the substrate. For this contribution, we utilized a particle-free silver ink to produce a transparent electrode by inkjet printing. After printing, the silver ions were reduced to metallic silver by an argon plasma. The process takes place at low temperatures (ca. 40 – 50°C), making it suitable for use with flexible substrates, which are often temperature-sensitive. The printed silver layers show good electrical conductivity and optical transmittance, with a crystalline grain structure being formed and maintained during the metallization process. This structure forms a self-organized nanometer-size grid, whose structure allows light to pass through. Due to its nano-structured property, the haze of the electrode was investigated using a simple experimental setup based on a light source shining through the electrode and analyzing the size of the projected pattern. Such qualitative assessment can be a useful indication of the quality of the electrode and we provide details on how to replicate this setup. The final electrodes were implemented in solution-processed OLEDs, which showed bright luminance and overall low haze compared to ITO-based reference devices.
Through the use of solution‐based materials, the field of printed electronics has not only made new devices accessible, but enabled the process of manufacture to move towards a high-throughput industrial scale. However, while the solution‐based active layer materials employed in these types of systems have been studied quite intensely, the conducting structures that feature in printed circuits, RFID applications, logic systems and electrodes in optoelectronic devices have not received as much attention.
Inkjet-printing in particular, as an additive, upscalable, direct write technique that requires no masks or lithographic pre-patterning of substrates, has been utilized to produce such structures in a wide variety of (opto)electronics, paving the way to fully solution-processed devices. However, for full compatibility with flexible, low cost substrates, the processing conditions of the deposited structures need to be controlled.
This contribution highlights our work on utilizing inkjet-printing to deposit copper nanoparticles (CuNPs) in order to form conducting structures within a range of electronic applications, specifically optoelectronic devices and printed circuits, and discusses methods to improve the conductive and interfacial properties. A reductive sintering approach is presented as an alternative to commonly used laser or flash lamp curing techniques.
The findings presented address the importance of continuing work in improving the effectiveness of printed conductive structures, including in their use in organic and hybrid (opto)electronic devices, in order to move towards fully solution-processed and flexible electronics.
Most current electronics manufacturing technologies utilise subtractive processing that is expensive, wasteful and energy intensive. Printed electronics is revolutionising the electronics industry by enabling additive processing that significantly reduces expense, waste and energy consumption.
The EU-funded PLASMAS project demonstrates the capability of printed electronics based on novel nanoparticle Cu inks with favourable cost to performance ratios, through development of large area printed circuit boards and printed logic as well as OLED and OPV elements with printed Cu nanoparticle electrodes.
However, a number of challenges need to be overcome when printing these metal nanoparticle inks – the typical feature height of printed structures of several 100 nm tend to exhibit a rough surface, which can lead to shorts in the device after subsequent overcoating of the organic active layer materials. Furthermore, the sintering temperature of the nanoparticle inks needs to be low (< 130 °C) in order to allow deposition and curing on transparent flexible substrates such as PET.
We therefore present the process development of solution-processed electrodes based on inkjet-printed Cu grids, by embedding the inkjet-printed metal grids to yield ITO-free optoelectronic devices. Secondly, we present roll-to-roll inkjet-printed RFID antennas based on Cu inks. Finally, we demonstrate a truly low-temperature sintering route for a Cu nanoparticle ink by using a reducing atmosphere of formic acid, yielding stable highly conducting layers.
The results of the project highlight overall parameters for solution processing and implementation of novel metal nanoparticle materials and architectures in printed electronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.