The grouping method assisted EPE-aware control method is being explored in a multi-feature dual layer Logic use case. EPE metric is estimated using angle resolved optical Scatterometry based overlay and electron beam-based metrology (large field of view SEM) for the reconstruction of edge-to-edge distance between the Metal and Via pattern. In the setup phase, EPE sensitivities to dose and focus have been derived using data from a FEM wafer. EPE-aware optimization, using scanner dose and overlay control sub-recipes, outperforms traditional optimization in simulations showing reduced EPE max per die. This improvement suggests a potential increase in device yield through the adoption of EPE-aware control strategies. To verify this performance improvement on wafers, an experiment is needed with minimal wafer to wafer and lot to lot variations which can be achieved by reducing time between lots and increasing the number of wafers measured.
Driving down imaging-induced edge placement error (EPE) is a key enabler of semiconductor technology node scaling1-3. From the 5 nm node forward, stochastic edge placement error (SEPE) is predicted to become the biggest contributor to total edge placement error. Many previous studies have established that LER, LCDU, and similar variability measurements require corrections for metrology artifacts and noise as well as mask variability transfer to more accurately represent wafer-level stochastic variability. In this presentation, we will discuss SEPE band behavior based on a methodology that allows local extraction of SEPE from total measured local variability (LEPU) in a generalized way along 2D contours.
We studied the potential of optical scatterometry to measure the full 3D profile of features representative to
real circuit design topology. The features were selected and printed under conditions to improve the
measurability of the features by scatterometry without any loss of information content for litho monitoring
and control applications. The impact of the scatterometry recipe and settings was evaluated and optimal
settings were determined.
We have applied this strategy on a variety of structures and gathered results using the YieldStar angular
reflection based scatterometer. The reported results show that we obtained effective decoupling of the
measurement of the 3 dimensions of the features. The results match with predictions by calibrated
lithographic simulations.
As a verification we have successfully performed a scanner matching experiment using computational
Pattern Matcher (cPM) in combination with YieldStar as a metrology tool to characterize the difference
between the scanners and verify the matching. The results thus obtained were better than using CD-SEM
for matching and verification.
Metrology on 3D features like line end gap in a SRAM structure is more challenging than on lines and spaces (L/S)
structures. Scatterometry has been widely used on L/S structures and has enabled characterization of lithographic
features providing with critical dimensions (CD) as well as feature height and side wall angle. In this paper, we will
present the application of scatterometry to these challenging structures using an angle resolved polarized scatterometer:
ASML YieldStar S-100. 3D features (line ends, brick walls,...) measurements will be presented. Measurement capability
will be discussed in terms of sensitivity of the parameters of interest and correlation between them leading to a proper
model choice.
KEYWORDS: 3D metrology, Metrology, Critical dimension metrology, Lithography, Scatterometry, Scanning electron microscopy, Scatter measurement, 3D modeling, Optical proximity correction, Process control
Metrology on 3D features like contact holes (CH) is more challenging than on lines and spaces (L/S) structures
especially if one wants to have profile information. Scatterometry has been widely used on L/S structures and has
enabled characterization of lithographic features providing with critical dimensions (CD) as well as feature height and
side wall angle. In this paper, we will present the application of scatterometry to the measurement of 3D structures using
an angle resolved polarized scatterometer: ASML YieldStar S-100. Contact hole measurements will be presented and
correlation to standard metrology tools will be shown. Measurement capability will be discussed in terms of
reproducibility, calculation time, sensitivity of the parameters of interest and correlation between them leading to a
proper model choice. Finally initial results on more complex 3D features (line ends, brick walls,...) will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.