Optical Whispering Gallery Mode (WGM) of various sizes and axisymmetry-shapes have been studied and used for a variety of optical sensors. Recently, we suggested a new type of WGM resonators with a saddle shape. These structures consist of two resonators with a bridging region resembling a valley. The unique shape of the saddle-shape resonators may allow the coupling of light into the resonator using a tapered fiber, by placing the tapered fiber at the structural minima point of the valley region. This coupling configuration provides high mechanical stability while maintaining the quality (Q) factor of the joint structured resonator. Here we present saddle shape resonators of various shapes and sizes, suitable for a variety of sensing applications.
A mechanically tuned broadband Kerr frequency comb (KFC) is demonstrated in a Whispering Gallery Modes (WGM) microresonator. Due to their tiny mode volumes (V) and ultra-high Q factor ~ 108, optical WGM microresonators exhibit low threshold power for nonlinear phenomena (scales as V/Q2). Here we focus on the production and mechanical tuning of a 300 nm wide Kerr Frequency Comb (KFC) in silica stretchable microspheres. The ability to tune the KFC source – and hence to lock it to a narrow atomic line – makes it suitable as the basis for a future miniature atomic clock.
Optical Whispering Gallery Mode (WGM) microresonators are an ideal platform for miniature and high sensitive sensors. They exhibit very small mode volumes and extremely high Q factors of the order of 106 - 109 providing a platform with low nonlinearity thresholds and low detection limits to environmental changes. Here we present and discuss some of the WGM-based applications we have been developing in our lab. Specifically, we present a WGM strain sensor based on a silica stretchable microsphere, with a Q factor of 108 . Tension stress is applied along a microsphere with two fiber tails by pulling on one tail. Consequently, the microsphere's WGMs are shifted and the measurement may serve as a strain sensor. Based on this strain sensor, a WGM magnetic sensor is suggested where the mechanical response of a magnetostrictive material to a varying magnetic field applies the tension stress. In addition, a narrow linewidth laser source for these sensors is described here as well, where a multimode diode laser is locked to a single WGM of the microsphere via self-injection feedback from the microsphere. This optical locking is accompanied with a substantial spectral narrowing of the multimode diode laser.
We report on recent experimental and theoretical studies of cesium laser, where we focused on the beam propagation factor M2 in flowing-gas Cs DPALs with stable optical resonators and of its dependence on the resonator geometry. The measured results were modeled by multi-transverse-mode model [Auslender et al., Opt. Express 25, 19767 (2017)]. Conditions for substantial improvement of the output laser beam quality, reducing M2 to close to unity, are found. In particular we show how changing the length of the resonator, and/or the radius of curvature of the high reflection mirror, leaving all other parameters of the laser unchanged, makes it possible to control the beam quality.
The beam quality and efficiency of diode-pumped alkali lasers are strongly dependent on parameters such as the pump beam geometry, the resonator configuration, the gain length and other features. In the present work we studied experimentally and theoretically the dependence of some of these parameters on the laser performance. An optical model of multi-transverse mode operation of alkali vapor lasers [Auslender et al, Opt. Express 25, 19767 (2017)], modified for the current experiments, is applied to the experimental results. The values of the laser power and M2 predicted by the model are in good agreement with the experimental results for different shapes and powers of the pump beam.
KEYWORDS: Cesium, 3D modeling, Continuous wave operation, Semiconductor lasers, Temperature metrology, Diodes, Gas lasers, Mirrors, Chemical species, Reflectivity
We report on the results of ongoing work in our lab on flowing-gas Cs DPAL. Some of the results have been already reported [Yacoby et al, Opt. Express 26, 17814 (2018)] but we briefly describe them here again to give a full picture of the work. Experimental and theoretical study of continuous wave Cs DPAL with gas circulation (He and CH4), flow velocities of 1-4.5 m/s and pump powers of 30-65 W, is reported. For the theoretical part of the study we used a 3D computational fluid dynamics model, solving the gas dynamics and kinetics equations relevant to flowing-gas laser operation. Maximum CW output power of 24 W and slope efficiency of 48% were obtained. The experimental and theoretical dependence of the lasing power on the flow velocity are in good agreement. The gas temperature rise in the laser cell was measured. The lasing power was not affected by the flow velocity at this range of pump powers and flow velocities due to the fact that the gas temperature rise was only several degrees. It was estimated – using a “fitting” method – that the quenching cross-section of the excited levels of Cs to the ground state is ~ 0.05 Å2 .
Experimental and theoretical parametric study of static and flowing-gas diode-pumped Cs lasers is reported. In the static case dependence of the output laser power and the beam quality factor M2 on the power and spatial shape of the pump beam is studied. An optical model of multi-transverse mode operation of alkali vapor lasers [Auslender et al, Opt. Express 25, 19767 (2017)] is applied to the experimental results. The values of the laser power and M2 predicted by the model are in good agreement with the experimental results for different shapes and powers of the pump beam We also report, briefly, on our recently published work [Yacoby et al, Opt. Express 26, 17814 (2018)] on flowing-gas Cs-DPAL where the output power and gas temperature rise in the laser cell at different flow velocities were studied and the results analyzed by our three-dimensional computational fluid-dynamics) model.
Comprehensive analysis of the performance and beam quality of subsonic flowing-gas K diode-pumped alkali lasers (DPALs) with different pumping geometries, using 3D computational fluid dynamics model, is reported. The model is first applied to a K DPAL with transverse pumping and parameters similar to those of the 1.5 kW K DPAL [Pitz et al, Proc. SPIE 9729, 972902 (2016)] and the calculated results are in satisfactory agreement with the measurements. To study the possibility of scaling up the K DPAL the model is then applied to 100-kW class device with transverse and end pumping geometry. Dependence of the output power on the flow velocity and the pumping geometry is studied. Comparison between end and transverse pumping schemes shows that the output power is almost unaffected by the pumping geometry. However, the spatial intensity distribution of the output laser beam depends on the pumping geometry: it is uniform for the end pumping, whereas for the transverse pumping it is strongly non-uniform at high gas temperature (corresponding to large density of K atoms), becoming more uniform with temperature reduction. The model is applied to evaluation of the beam quality of flowing-gas K DPALs which strongly depends on the refractive index distribution in the gain medium. The beam divergence and the width of the intensity profile in the far field for the end pumping appear to be much smaller than for the transverse pumping. Wave front corrections of the transversely pumped device using cylindrical lens results in substantial reduction of the laser beam divergence and improvement of its quality which becomes comparable with that of the end pumped laser.
The pump-to-laser beam overlap and the cell length of static diode-pumped Cs lasers are crucial parameters for optimization of these lasers. In a previous publication we modeled the influence of the pump-to-laser beam overlap on the performance of Ti:Sapphire pumped cesium vapor laser (T. Cohen, E. Lebiush, I. Auslender, B.D. Barmashenko and S. Rosenwaks, Opt. Exp. 24, 14374 (2016)). In the present paper we report on experiments and modeling in progress on diode pumped cesium vapor laser.
Scaling-up flowing-gas diode pumped alkali lasers (DPALs) to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. We examined the influence of the flow velocity and Mach number M on the maximum achievable power of subsonic and supersonic lasers. For Cs DPAL devices with M = 0.2 - 3 the output power increases with increasing M by only ~20%, implying that supersonic operation mode has only small advantage over subsonic. In contrast, the power achievable in K DPALs strongly depends on M. The output power increases by ~100% when M increases from 0.2 to 4, showing a considerable advantage of supersonic device over subsonic. The reason for the increase of the power with M in both Cs and K DPALs is the decrease of the temperature due to the gas expansion in the flow system. However, the power increase for K lasers is much larger than for the Cs devices mainly due to the much smaller fine-structure splitting of the 2P states (~58 cm-1 for K and ~554 cm-1 for Cs), which results in a much stronger effect of the temperature decrease in K DPALs. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry. However, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic
(M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing
medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for
K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler
hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the
gas total pressure in the nozzle) are required for continuous closed cycle operation.
For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum
achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~
10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one.
The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60%
losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible.
For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of
the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K
DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%,
respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by
rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and
pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to
each other, shows that the output power and optical-to-optical efficiency are not affected by the pump geometry.
However, the output laser beam in the case of end-pumped DPALs has a homogeneous spatial intensity distribution in
the beam cross section, whereas for transverse-pumped DPALs the intensity varies significantly along the pumping axis
(perpendicular to the resonator optical axis) and hence is strongly inhomogeneous in the laser beam cross section. Thus,
higher brightness and better beam quality in the far field is achieved for the end-pumping geometry. Optimization of the
resonator geometry for minimal gas temperature rise and minimal intra-resonator intensity (corresponds to a low
ionization rate) is also reported.
We report on recent progress on our three-dimensional computational fluid dynamics (3D CFD) modeling of supersonic
diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium. For
a supersonic Cs DPAL with laser section geometry and resonator parameters similar to those of the 1-kW flowing-gas
subsonic Cs DPAL [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] the maximum achievable output power, ~ 7
kW, is 25% higher than that achievable in the subsonic case. Comparison between semi-analytical and 3D CFD models
for Cs shows that the latter predicts much higher maximum achievable output power than the former. Optimization of the
laser parameters using 3D CFD modeling shows that very high power and optical-to-optical efficiency, 35 kW and 82%,
respectively, can be achieved in a Cs supersonic device pumped by a collimated cylindrical (0.5 cm diameter) beam.
Application of end- or transverse-pumping by collimated rectangular (large cross section ~ 2 - 4 cm2) beam makes it
possible to obtain even higher output power, > 250 kW, for ~ 350 kW pumping power. The main processes limiting the
power of Cs supersonic DPAL are saturation of the D2 transition and large ~ 40% losses of alkali atoms due to
ionization, whereas the influence of gas heating is negligibly small. For supersonic K DPAL both gas heating and
ionization effects are shown to be unimportant and the maximum achievable power, ~ 40 kW and 350 kW, for pumping
by ~ 100 kW cylindrical and ~ 700 kW rectangular beam, respectively, are higher than those achievable in the Cs
supersonic laser. The power achieved in the supersonic K DPAL is two times higher than for the subsonic version with
the same resonator and K density at the gas inlet, the maximum optical-to-optical efficiency being 82%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.