The modeling of a temperature optical fiber sensor is proposed and experimentally demonstrated in this work. The suggested structure to obtain the sensing temperature characteristics is by the use of a mechanically induced Long Period Fiber Grating (LPFG) on a tapered single mode optical fiber. A biconical fiber optic taper is made by applying heat using an oxygen-propane flame burner while stretching the single mode fiber (SMF) whose coating has been removed. The resulting geometry of the device is important to analyze the coupling between the core mode to the cladding modes, and this will determine whether the optical taper is adiabatic or non-adiabatic. On the other hand, the mechanical LPFG is made up of two plates, one grooved and other flat, the grooved plate was done on an acrylic slab with the help of a computerized numerical control machine (CNC). In addition to the experimental work, the supporting theory is also included.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.