The Lunar Laser Communication Demonstration (LLCD) successfully demonstrated for the first time duplex laser communications between a lunar-orbiting satellite and ground stations on Earth with error-free downlink data rates up to 622 Mb/s utilizing an optical receiver based on photon-counting superconducting nanowires and operating near 1550 nm.
Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.
We describe a number of methods that have been pursued to develop superconducting nanowire single-photon detectors (SNSPDs) with attractive overall performance, including three systems that operate with >70% system detection efficiency and high maximum counting rates at wavelengths near 1550 nm. The advantages and tradeoffs of various approaches to efficient optical coupling, electrical readout, and SNSPD design are described and contrasted. Optical interfaces to the detectors have been based on fiber coupling, either directly to the detector or through the substrate, using both single-mode and multimode fibers with different approaches to alignment. Recent advances in electrical interfaces have focused on the challenges of scalability and ensuring stable detector operation at high count rates. Prospects for further advances in these and other methods are also described, which may enable larger arrays and higher-performance SNSPD systems in the future. Finally, the use of some of these techniques to develop fully packaged SNSPD systems will be described and the performance available from these recently developed systems will be reviewed.
Superconducting nanowire single photon detectors have recently been demonstrated as viable candidates for photon-counting
optical receivers operating at data rates in excess of 100 Mbit/s. In this paper, we discuss techniques for
extending these data rates to rates > 1 Gbit/s. We report on a recent demonstration of a 2-element nanowire detector
array operating at a source data rate of 1.25 Gbit/s. We also describe techniques for emulating larger arrays of detectors
using a single detector. We use these techniques to demonstrate photon-counting receiver operation at data rates from
780-Mbit/s to 2.5 Gbit/s with sensitivities ranging from 1.1 to 7.1 incident photons per bit.
The sensitivity of a high-rate photon-counting optical communications link depends on the performance of the photon counter used to detect the optical signal. In this paper, we focus on ways to reduce the effect of blocking, which is loss due to time periods in which the photon counter is inactive following a preceding detection event. This blocking loss can be reduced by using an array of photon counting detectors or by using photon counters with a shorter inactive period. Both of these techniques for reducing the blocking loss can be employed by using a multi-element superconducting nanowire single-photon detector. Two-element superconducting nanowire single-photon detectors are used to demonstrate error-free photon counting optical communication at data rates of 781 Mbit/s and 1.25 Gbit/s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.