KEYWORDS: Calibration, Coronagraphy, Simulations, Observational astronomy, Data processing, Exoplanets, Equipment, Analog electronics, Space telescopes, Signal processing
The Nancy Grace Roman Space Telescope’s Coronagraph Instrument will for the first time demonstrate active wavefront sensing and control for a space-based coronagraph, and may image the first planet in reflected light. The Community Participation Program has been initiated to engage members of the broader scientific community in the preparation for its planned launch in late 2026/early 2027. Here we will present the on-going work of the Data Reduction and Simulations working group, one of the four working groups within the Community Participation Program. The working group is charged with the development of the data reduction and postprocessing pipeline for the on-sky data and the development of a simulation suite to aid in the preparation and planning of Roman Coronagraph observations.
Operating in an unprecedented contrast regime (10 − 7 to 10 − 9), the Roman Coronagraph Instrument (CGI) will serve as a pathfinder for key technologies needed for future Earth-finding missions such as HabEx and LUVOIR. The Roman Exoplanet Imaging Data Challenge (Roman EIDC) was a community engagement effort that tasked participants with extracting exoplanets and their orbits for a 47-UMa-like target star given: (1) 15 years of simulated precursor radial velocity (RV) data and (2) six epochs of simulated imaging taken over the course of the Roman mission. Led by the Turnbull CGI Science Investigation Team, the Roman EIDC was preceded by four tutorial “hack-a-thon” events in Baltimore, Pasadena, New York City, and Tokyo. The Roman EIDC officially launched in October 2019 and ran for 8 months, offering a unique opportunity for exoplanet scientists of all experience levels to get acquainted with realistic near-future imaging data. The Roman EIDC simulated images include four epochs with CGI’s Hybrid Lyot Coronagraph (HLC) plus two epochs with a starshade (SS) assumed to arrive as part of a Starshade Rendezvous later in the mission. We focus on our in-house analysis of the outermost planet “d,” for which the SS’s higher throughput and lower noise floor present a factor of ∼4 improvement in the signal-to-noise ratio over the narrow-field HLC. We find that, although the RV detection was marginal for planet d, the precursor RV data enabled the mass and orbit to be constrained with only two epochs of SS imaging. Including the HLC images in the analysis results in improved measurements over RV + SS alone, with the greatest gains resulting from images taken at epochs near maximum elongation. Combining the two epochs of SS imaging with the RV + HLC data resulted in a factor of ∼2 better orbit and mass determinations over RV + HLC alone. In summary, the Roman CGI, combined with precursor RV data and latermission SS imaging, forms a powerful trifecta in detecting exoplanets and determining their masses, albedos, and system configurations. While the Roman CGI will break new scientific and technological ground with direct imaging of giant exoplanets within ∼5 AU of V ˜ 5 and brighter stars, a Roman Starshade Rendezvous mission would additionally enable the detection of planets out to ∼8 AU in those systems.
Organized by the Turnbull Science Investigation Team (SIT), the 2019-2020 Roman Exoplanet Imaging Data Challenge (EIDC) launched in mid October 2019 and ran for eight months. This data challenge was a unique opportunity for exoplanet scientists of all backgrounds and experience levels to get acquainted with realistic Roman CGI (coronagraphic) simulated data with a new contrast regimes at 10-8 to 10-9 enabling to unveil planets down to the Neptune-mass in reflected light. Participating teams had to recover the astrometry of an exoplanetary system combining precursor radial velocity data (also simulated across 15 years) with two to six coronagraphic imaging epochs (HLC and Star Shade). They had to perform accurate orbital fitting and determine the mass of any planet hidden in the data. It involved PSF subtraction techniques, post-processing and other astrophysics hurdles to overcome such as contamination sources (stellar, extragalactic and exozodiacal light). We organized four tutorial "hack-a-thon" events to get as many people on-board. The EIDC proved to be an excellent way to engage with the intricacies of the first mission to perform wavefront control in space, as a pathfinder to future flagship missions. It also generated a lot of positive interactions between open source package owners and a whole new set of young exoplanet scientists running them. As a community we are a few steps closer to being ready to analyze real CGI data!
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.