PRIMA addresses questions about the origins and growth of planets, supermassive black holes, stars, and dust. Much of the radiant energy from these formation processes is obscured and only emerges in the far infrared (IR) where PRIMA observes (24–261 um). PRIMA’s PI science program (25% of its 5-year mission) focuses on three questions and feeds a rich archival Guest Investigator program: How do exoplanets form and what are the origins of their atmospheres? How do galaxies’ black holes and stellar masses co-evolve over cosmic time? How do interstellar dust and metals build up in galaxies over time? PRIMA provides access to atomic (C, N, O, Ne) and molecular lines (HD, H2O, OH), redshifted PAH emission bands, and far-IR dust emission. PRIMA’s 1.8-m, 4.5-K telescope serves two instruments using sensitive KIDs: the Far-InfraRed Enhanced Survey Spectrometer (continuous, high-resolution spectral coverage with over an order of magnitude improvement in spectral line sensitivity and 3-5 orders of magnitude improvement in spectral survey speed) and the PRIMA Imager (hyperspectral imaging, broadband polarimetry). PRIMA opens new discovery space with 75% of the time for General Observers.
The PRobe far-Infrared Mission for Astrophysics (PRIMA) is an actively cooled, infrared observatory for the community for the next decade.
On board, an infrared camera, PRIMAger, will provide observers with coverage of mid-infrared to far-infrared wavelengths from about 25 to 264 microns. PRIMAger will offer two imaging modes: the Hyperspectral mode will cover the 25-80 microns wavelength range with a resolution R~10 while the Polarimetric mode will have four broad-band filters, sensitive to polarization, from 80 to 264 microns. These capabilities have been specifically tailored to answer fundamental astrophysical questions such as black hole and star-formation coevolution in galaxies, the evolution of small dust grains over a wide range of redshifts, and the effects of interstellar magnetic fields in various environments, as well as opening a vast discovery space with versatile photometric and polarimetric capabilities.
Eos is a mission concept to be proposed to the expected 2025 NASA Small Explorers Announcement of Opportunity (SMEX AO). Eos observes molecular clouds in our galaxy and nearby planet forming disks to understand the link between star and planet formation and molecular hydrogen in galactic star forming regions. Eos does this using very long-slit, high resolution spectroscopy of far ultraviolet (FUV) emission from fluorescent molecular hydrogen (H2), a powerful and underutilized FUV diagnostic. H2 is the most abundant molecule in the universe, but is typically observed in the infrared (IR) or inferred via proxies such as CO. Eos will directly observe H2 via fluorescence, which can be stimulated from a range of sources (shocks, interstellar UV radiation, bright stars, etc). Here we briefly describe the science objectives of Eos, as well as the instrument implementation.
We present Hyperion, a mission concept recently proposed to the December 2021 NASA Medium Explorer announcement of opportunity. Hyperion explores the formation and destruction of molecular clouds and planet-forming disks in nearby star-forming regions of the Milky Way. It does this using long-slit high-resolution spectroscopy of emission from fluorescing molecular hydrogen, which is a powerful far-ultraviolet (FUV) diagnostic. Molecular hydrogen (H2) is the most abundant molecule in the universe and a key ingredient for star and planet formation but is typically not observed directly because its symmetric atomic structure and lack of a dipole moment mean there are no spectral lines at visible wavelengths and few in the infrared. Hyperion uses molecular hydrogen’s wealth of FUV emission lines to achieve three science objectives: (1) determining how star formation is related to molecular hydrogen formation and destruction at the boundaries of molecular clouds, (2) determining how quickly and by what process massive star feedback disperses molecular clouds, and (3) determining the mechanism driving the evolution of planet-forming disks around young solar-analog stars. Hyperion conducts this science using a straightforward, highly efficient, single-channel instrument design. Hyperion’s instrument consists of a 48-cm primary mirror with an f/5 focal ratio. The spectrometer has two modes, both covering 138.5- to 161.5-nm bandpasses. A low resolution mode has a spectral resolution of R ≥ 10,000 with a slit length of 65 arcmin, whereas the high-resolution mode has a spectral resolution of R ≥ 50,000 over a slit length of 5 armin. Hyperion occupies a 2-week-long high-earth lunar resonance TESS-like orbit and conducts 2 weeks of planned observations per orbit, with time for downlinks and calibrations. Hyperion was reviewed as category I, which is the highest rating possible but was not selected.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.