Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and robust techniques for the detection of narcotics, explosives and chemical warfare agents. IMS is widely used in forensic, military and security applications. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention (CWC) treaty verification as well as humanitarian de-mining efforst have mandated that equal importance be placed on the time required to obtain results as well as the quality of the analytical data. In this regard IMS is virtually unrivaled when both speed of response and sensitivity have to be considered. The problem with conventional (signal averaging) IMS systems is the fixed duty cycle of the entrance gate that restricts to less than 1%, the number of available ions contributing to the measured signal. Furthermore, the signal averaging process incorporates scan-to-scan variations that degrade the spectral resolution contributing to misidentifications and false positives.
Various types of precipitates and grain boundaries have been studied in Cd1-xZnxTe (CZT). In this study we used elemental analysis methods such as scanning electron microscopy (SEM), microprobe analysis, inductively coupled plasma mass spectroscopy (ICP/MS) and the new laser ablation ICP/MS methods. Transient charge technique was applied for the first time of CZT crystals for evaluating the electrical transport properties of semiconductors. Another method, IR transmission spectroscopy, enables us to evaluate the microstructure defects and then to correlate this with impurity level and electrical properties in order to have a better understanding of the requirements to improve the yield for large volume CZT spectrometers. We have evaluated crystals from the former Soviet Union, which have high concentration of defects. Precipitates and grain boundaries rich with carbon were observed in CZT crystals. Electrical transport properties such as (mu) (tau) (mobility-lifetime product) were measured and correlated with the chemical physical defects, as observed by IR transmission. On crystals rich with many microstructures, as shown by IR transmission, lifetimes below 1 microsecond(s) were measured, compared with 5 - 15 microsecond(s) on the detector grade materials. SEM and microprobe analysis performed on the precipitates gave high values of carbon. However, using laser ablation ICP/MS, a value in the range of 200 - 800 ppm for carbon was measured.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.