The instrumentation plan for the ELT foresees the ArmazoNes high Dispersion Echelle Spectrograph (ANDES). The ANDES-project and consortium entered phase B in January 2022 and underwent several (internal and external) revisions by now to ensure that the requirements and eventually the challenging goals can be met by the physical design of the spectrograph.
Among its main scientific goals are the detection of atmospheres of exoplanets and the determination of fundamental physical constants. For this, high radial velocity precision and accuracy are required. Even though the ANDES-spectrograph is designed for maximum intrinsic stability, a calibration and thus a calibration unit is mandatory. To allow for maximum flexibility and modularity the calibration unit is physically split into three calibration units.
We show the design of the calibration units and their individual components, where possible. This includes the electronics, the mechanics, the software supporting and controlling the light guiding and calibration sources.
The ESO/ELT ANDES (ArmazoNes high Dispersion Echelle Spectrograph) project successfully completed the system architecture review and is currently finalizing its preliminary design phase. ANDES is the high-resolution spectrograph for the ELT (ESO Extremely Large Telescope) capable of reaching a resolution of R ~ 100,000 simultaneously, in a wavelength range between 0.35 -2.4 µm (goals included), characterized by high-precision and extreme calibration accuracy suitable to address a variety of flagship scientific cases across a wide range of astronomical domains. To fulfill the required specifications the proposed design adopts a modular approach where the instrument is split in four individual spectrographs, each fiber-fed, and thermally and vacuum stabilized. A dedicated front-end which host a single conjugated adaptive optics module, collects either the light from the telescope or from a calibration unit feeding in turn the individual spectrographs. To master the described complexity the same modularity is reflected also at the project management level: each of the 9 subsystems (counting also the software as a standalone subsystem) is under direct responsibility of different teams coordinated by the ANDES project office. The high distribution and the large community involvement, consisting of 24 institutes from 13 countries, represent certainly a challenge from the project management point of view. In this paper we present the project management approach we envisaged to master successfully all the ANDES project phases from the finalization of the preliminary design up to commissioning on-sky; in particular we will describe in detail the risk management and PA/QA activities we have foreseen to assure appropriate risk mitigation and an overall high-quality standard required for the ANDES project.
SPIP is a new-generation near-infrared spectropolarimeter / high-precision velocimeter to be mounted at the 2m Telescope Bernard Lyot (TBL) at Pic du Midi de Bigorre, the French Pyrénées astronomical observatory (alt. 2877 m), by end-2024, and mostly copied from SPIRou in operation at the 3.6 Canada-France-Hawaii Telescope (MaunaKea, Hawaii, alt. 4200 m) since 2018. Observing in the 0.95-2.5 μm range (YJHK bands), SPIP, like SPIRou, will be dedicated to the detection and characterization of planetary worlds around nearby red dwarfs and to the study of how stellar magnetic fields impact star / planet formation. This paper presents the work performed on integrating and testing the cryogenic spectrograph unit (cooled down at 70K and thermally stabilized at 1mK), benefiting from both the robustness of SPIRou and the design improvements implemented for SPIP.
The calibration units of today's instruments are often limited by the fact that a reference source can feed one or even two outputs without having much loss. As a result, there is often a trade-off between throughput and system size to be made. We have designed a novel Light Distribution System based on pneumatic actuators that allows a defined number of sources to be selected and several outputs to be fed at the same time.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
SPIP is a new instrument for the 2m Télescope Bernard Lyot (TBL) at Pic du Midi, located in the French Pyrénées. Observing in the 0.95-2.5 μm range (YJHK bands), SPIP at TBL will team with SPIRou at the 3.6m CFHT (Maunakea, Hawaii), aiming together at detecting and characterizing planetary worlds around nearby red dwarfs, and at documenting magnetized star / planet formation. This paper describes the instrument sub-systems integration and validation tests performed in Toulouse (France) with a particular focus on the H4RG detector, failure analysis and mitigation.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 µm with the goal of extending it to 0.35-2.4 µm with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
SPIP is a near infrared (nIR) echelle spectropolarimeter and a high-precision velocimeter for the 2-m Telescope Bernard Lyot (TBL – Pic du Midi, France), a twin version of SPIRou, mounted at the 3.6-m Canada France Hawaii Telescope (CFHT - Maunakea, Hawaii). This new generation instrument aims at detecting planetary worlds and Earth-like planets orbiting nearby red dwarfs, and at studying the impact of stellar magnetic fields on the formation of low-mass stars and their planets. The cryogenic spectrograph, cooled down at 70 K, is a fiber-fed double-pass cross-dispersed echelle spectrograph, covering the YJHK spectral bands (0.95-2.5 µm) in a single exposure. Among the key instrument parameters, high resolving power (of 70k) and long-term thermal stability (at a level better than 1 mK) are mandatory to achieve a relative radial velocity precision of 1-2 m/s. The engineering team at OMP / IRAP in Toulouse (France) took up the challenge of adapting and improving the SPIRou concept for SPIP to become the logical complement of SPIRou, to be used on the largest telescope in France for most of the available observing time. In this paper, we describe the work performed on the design, integration and in-lab tests on the assembled instrument in Toulouse. An evolved design on the Cassegrain unit, a completely new version of the spectrograph thermal insulation, as well as a number of minor upgrades with respect to SPIRou, should allow SPIP to be even more precise, stable and efficient than SPIRou
At the end of 2021, the ESO council approved the start of the construction phase for a High Resolution Spectrograph for the ELT, formerly known as ELT-HIRES, renamed recently as ANDES (ArmazoNes high Dispersion Echelle Spectrograph). The current initial schedule foresees a 9-years development aimed to bring the instrument on-sky soon after the first-generation ELT instruments. ANDES combines high spectral resolution (up to 100,000), wide spectral range (0.4 µm to 1.8 µm with a goal from 0.35 µm to 2.4 µm) and extreme stability in wavelength calibration accuracy (better than 0.02 m/s rms over a 10-year period in a selected wavelength range) with massive optical collecting power of the ELT thus enabling to achieve possible breakthrough groundbreaking scientific discoveries. The main science cases cover a possible detection of life signatures in exoplanets, the study of the stability of Nature’s physical constants along the universe lifetime and a first direct measurement of the cosmic acceleration. The reference design of this instrument in its extended version (with goals included) foresees 4 spectrographic modules fed by fibers, operating in seeing and diffraction limited (adaptive optics assisted) mode carried out by an international consortium composed by 24 institutes from 13 countries which poses big challenges in several areas. In this paper we will describe the approach we intend to pursue to master management and system engineering aspects of this challenging instrument focused mainly on the preliminary design phase, but looking also ahead towards its final construction.
MARSU is a CubeSat mission designed to monitor transits of planetary systems around nearby M-dwarfs and young Sun-like stars, and characterize the magnetic activity of the host stars. As a dedicated infrared space photometer, MARSU is expected to be able to detect Earth-like planets in the habitable zone of M dwarfs. It will achieve continuous (duty cycle in excess of 90%) photometric monitoring in the YJH bands (1- 1.7 µm) for stars up to an H magnitude of 11, at a precision better than one mmag over continuous periods of up to 3 months. A heliosynchronous orbit is selected to ensure nearly continuous monitoring of stellar targets in the antisolar direction. MARSU will include a photometric telescope occupying 1x1x3U in a 6U platform. The payload features an 8.5cm dioptric telescope with an athermal optical system and a Short-Wave InfraRed (SWIR) type detector. End-to-end simulations have been carried out and confirm that the quality of photometric data will be consistent with the primary science goals and that the subsequent technical constraints (e.g., pointing stability) are consistent with the expected performance of a 6U CubeSat. MARSU will work in parallel with SPIRou and SPIP, which are twin ground-based infrared spectropolarimeters and velocimeters operated as new generation instruments for the Canada-France-Hawaii Telescope (CFHT, Maunakea Observatory, Hawaii) and Télescope Bernard Lyot (TBL, Pic du Midi, France) respectively. The multi-source data will be analyzed together to optimize the activity filtering and exoplanet characterization (mass from the ground, radius from space).
HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
SPIRou is a near-IR (0.98-2.35μm) echelle spectropolarimeter / high precision velocimeter installed at the beginning of the year 2018 on the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, Hawaii, with the main goal of detecting Earth-like planets around low mass stars and magnetic fields of forming stars. In this paper, the fiber links which connects the polarimeter unit to the cryogenic spectrograph unit (35 meter apart) are described. The pupil slicer which forms a slit compatible with the spectrograph entrance specifications is also discussed in this paper. Some challenging aspects are presented. In particular this paper will focus on the manufacturing of 35 meter fibers with a very low loss attenuation (< 13dB/km) in the non-usual fiber spectral domain from 0.98 μm to 2.35 μm. Other aspects as the scrambling performance of the fiber links to reach high accuracy radial velocity measurements (<1m/s) and the performances of the pupil slicer exposed at a cryogenic and vacuum environment will be discussed.
SPIRou is an innovative near infra-red echelle spectropolarimeter and a high-precision velocimeter for the 3.6 m Canada-France-Hawaii Telescope (CFHT – Mauna Kea, Hawaii). This new generation instrument aims at detecting planetary worlds and Earth-like planets of nearby red dwarfs, in habitable zone, and studying the role of the stellar magnetic field during the process of low-mass stars / planets formation. The cryogenic spectrograph unit, cooled down at 80 K, is a fiber fed double-pass cross dispersed echelle spectrograph which works in the 0.98-2.40 μm wavelength range, allowing the coverage of the YJHK bands in a single exposure. Among the key parameters, a long-term thermal stability better than 2 mK, a relative radial velocity better than 1 m.s -1 and a spectral resolution of 70K are required. After ~ 1 year of assembly, integration and tests at IRAP/OMP (Toulouse, France) during 2016/2017, SPIRou was then shipped to Hawaii and completely re-integrated at CFHT during February 2018. A full instrument first light was performed on 24th of April 2018. The technical commissioning / science validation phase is in progress until June 2018, before opening to the science community. In this paper, we describe the work performed on integration and test of the opto-mechanical assemblies composing the spectrograph unit, firstly in-lab, in Toulouse and then on site, at CFHT. A review of the performances obtained in-lab (in 2017) and during the first on-sky results (in 2018) is also presented.
SPIRou is a near-IR (0.98-2.35μm), echelle spectropolarimeter / high precision velocimeter being designed as a nextgeneration instrument for the 3.6m Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, with the main goal of detecting Earth-like planets around low mass stars and magnetic fields of forming stars. The SPIRou science fibers, which connect the polarimeter unit to the cryogenic spectrograph unit (35 meter apart), emit an undesirable thermal flux into the spectrograph, due to their intrinsic absorption. This may degrade the signal to noise ratio and then the sensitivity of the instrument for the reddest wavelengths. For verifying the calculation model used to predict the thermal emission from the SPIRou science fibers, a test bench is set-up at LESIA (Observatory of Paris). In this paper, the experimental approach to measure the thermal emission from a 30 meter long fluoride fiber @3μm is described. Experimental results are then compared to those predicted by the theoretical model.
SPIRou is a near-IR echelle spectropolarimeter and high-precision velocimeter under construction as a next-
generation instrument for the Canada-France-Hawaii-Telescope. It is designed to cover a very wide simultaneous
near-IR spectral range (0.98-2.35 μm) at a resolving power of 73.5K, providing unpolarized and polarized
spectra of low-mass stars at a radial velocity (RV) precision of 1m/s. The main science goals of SPIRou are
the detection of habitable super-Earths around low-mass stars and the study of stellar magnetism of star at
the early stages of their formation. Following a successful final design review in Spring 2014, SPIRou is now
under construction and is scheduled to see first light in late 2017. We present an overview of key aspects of
SPIRou’s optical and mechanical design.
KEYWORDS: Stars, Calibration, Control systems, Telescopes, Spectrographs, Sensors, Control systems design, Temperature metrology, Optical benches, Lamps
SPIRou is a near-IR (0.98-2.35μm), echelle spectropolarimeter / high precision velocimeter being designed as a nextgeneration
instrument for the 3.6m Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, with the main goals of
detecting Earth-like planets around low-mass stars and magnetic fields of forming stars. The unique scientific and
technical capabilities of SPIRou are described in a series of eight companion papers. In this paper, the means of
controlling the instrument are discussed. Most of the instrument control is fairly normal, using off-the-shelf components
where possible and reusing already available code for these components. Some aspects, however, are more challenging.
In particular, the paper will focus on the challenges of doing fast (50 Hz) guiding with 30 mas repeatability using the
object being observed as a reference and on thermally stabilizing a large optical bench to a very high precision (~1 mK).μ
SPIRou is a near-IR (0.98-2.35μm), echelle spectropolarimeter / high precision velocimeter being designed as a next-generation instrument for the 3.6m Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, with the main goal of
detecting Earth-like planets around low mass stars and magnetic fields of forming stars. The unique scientific and
technical capabilities of SPIRou are described in a series of seven companion papers. In this paper, the fiber links which
connects the polarimeter unit to the cryogenic spectrograph unit (35 meter apart) are described. The pupil slicer which
forms a slit compatible with the spectrograph entrance specifications is also discussed in this paper.
Some challenging aspects are presented. In particular this paper will focus on the manufacturing of 35 meter fibers with a
very low loss attenuation (< 13dB/km) in the non-usual fiber spectral domain from 0.98 μm to 2.35 μm. Other aspects as
the scrambling performance of the fiber links to reach high accuracy radial velocity measurements (1m/s) and the design
of the pupil slicer exposed at a cryogenic and vacuum environment will be discussed.
SPIRou is a near-infrared, echelle spectropolarimeter/velocimeter under design for the 3.6m Canada-France-
Hawaii Telescope (CFHT) on Mauna Kea, Hawaii. The unique scientific capabilities and technical design features
are described in the accompanying papers at this conference. In this paper we focus on the data reduction software
(DRS) and the data simulation tool. The SPIRou DRS builds upon the experience of the existing SOPHIE,
HARPS and ESPADONS spectrographs; class-leaders instruments for high-precision RV measurements and
spectropolarimetry. While SPIRou shares many characteristics with these instruments, moving to the near-
infrared domain brings specific data-processing challenges: the presence of a large number of telluric absorption
lines, strong emission sky lines, thermal background, science arrays with poorer cosmetics, etc. In order for the
DRS to be fully functional for SPIRou's first light in 2015, we developed a data simulation tool that incorporates
numerous instrumental and observational e_ects. We present an overview of the DRS and the simulation tool
architectures.
SPIRou is a near-IR (0.98-2.35μm), echelle spectropolarimeter / high precision velocimeter being designed as a nextgeneration
instrument for the 3.6m Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, with the main goal of
detecting Earth-like planets around low-mass stars and magnetic fields of forming stars. The unique scientific and
technical capabilities of SPIRou are described in a series of seven companion papers. In this paper, the Front End of the
instrument is presented. Positioned at the Cassegrain Focal plane of the telescope, the front end is constituted of an
atmospheric dispersion corrector, a field viewer with an image stabilization unit (0.03 arc seconds RMS stabilization
goal), a calibration wheel and an achromatic polarimeter unit based on Fresnel Rhombs. The polarimeter permits the
circular and linear polarization analysis. The retardance of the Fresnel rhombs is nominal to better than 0.5% in the
whole spectral domain. The evaluation and the reduction of the thermal background of the Front end is a challenging part
of the instrument.
SPIRou is a near-infrared, echelle spectropolarimeter/velocimeter under design for the 3.6m Canada-France-Hawaii
Telescope (CFHT) on Mauna Kea, Hawaii. The unique scientific capabilities and technical design features are described
in the accompanying (eight) papers at this conference. In this paper we focus on the lens design of the optical
spectrograph. The SPIROU spectrograph is a near infrared fiber fed double pass cross dispersed spectrograph. The
cryogenic spectrograph is connected with the Cassegrain unit by the two science fibers. It is also fed by the fiber coming
from the calibration box and RV reference module of the instrument. It includes 2 off-axis parabolas (1 in double pass),
an echelle grating, a train of cross disperser prisms (in double pass), a flat folding mirror, a refractive camera and a
detector. This paper describes the optical design of the spectrograph unit and estimates the performances. In particular,
the echelle grating options are discussed as the goal grating is not available from the market.
We present the Advanced Robotic Agile Observatory (ARAGO), a project for a large variability survey of the sky, in the range 10-8Hz (year) to 1Hz. Among its scientific objectives are the detection of cosmic gamma-ray bursts, both on alert and serendipitously, orphan afterglows, extrasolar planets, AGNs, quasar microlensing, variable and flare stars, trans-neptunian asteroids, Earth-grazers, orbital debris, etc. A large Education and Public Outreach program will be an important part of the project. The telescope itself will be made of Silicon Carbide, allowing, among other advantages, a very light weight and agile capabilities. ARAGO will be fully autonomous, i.e. there will be no human intervention from the request to the data processing and result dissemination, nor to assist night or day operations. ARAGO will start routine observation by mid-2005.
Jean-Michel Reess, Pierre Drossart, Alain Semery, Marc Bouye, Olivier Dupuis, Yann Hello, Gerard Huntzinger, Driss Kouach, J. Parisot, Didier Tiphene, J. Romon, Y. Ghomchi, Jean-Pierre Bibring, G. Bonello, S. Erard, B. Gondet, Yves Langevin, Alain Soufflot, Angioletta Coradini, Fabrizio Capaccioni, Enrico Suetta, Michele Dami, A. Cisbani, C. Pasqui, I. Ficai Veltroni, Gabriele Arnold, Johann Benkhoff, G. Peters
Virtis-H is the high spectral resolution channel of the visible and infrared imaging spectrometer VIRTIS, an instrument of the ESA/ROSETTA mission devoted to the in-orbit remote sensing study of the comet P/46 Wirtanen. After successful tests and calibration, the flight model has been delivered to the European Space Agency for integration on the satellite before the launch foreseen in January 2003. The Virtis-H channel is a cross-dispersion spectrometer in the spectral range 2-5um with a resolution between 1200 and 3000. Its design consists in an afocal telescope-collimator off-axis parabola mirrors, a prism-grating system performing the cross-dispersion, and a three-lens objective imaging the entrance slit on a 436x270 HgCdTe array from Raytheon/IRCOE. At each recorded image, a full spectrum of the observed scene is reconstructed allowing the study of the fine spectral details of the coma and the cometary nucleus. The calibration have shown the fully compliance of the instrument performances with the simulations in terms of spectral resolution, radiometric accuracy and sensibility. For example, spectra of gas, water ice and mineral powders have been measured with Virtis-H showing either its ability to resolve fine spectral lines but also its sensitivity to low fluxes; furthermore, measurements on a 250K blackbody shows its sensibility to relative temperature variation lower than 0.5oC..
During the last 30 years, the Space Research Department (DESPA) of Paris Observatory has developed infrared instrumentation for space and ground-based telescopes. First, we present the PbS linear detector of the ISM IR imaging spectrometer of the Phobos mission. Then the CID InSb focal plane of ISOCAM-SW is described. The studies of this CID InSb focal plane allowed us to develop an IR camera for the first astronomical observations using adaptive optics. We also describe the linear array built for the OMEGA imaging spectrometer of the Mars 96 mission. The last chapter is dedicated to the IR spectrometer of the Huygens probe. To conclude, the needs and challenges in the area of mid-band infrared astronomy are discussed.
VIRTIS, the infrared imaging spectrometer of the ESA/ROSETTA mission, to be launched in January 2003, is devoted to the in-orbit remote sensing study of comet P/46 Wirtanen. Within the infrared imaging spectrometer VIRTIS, the high spectral resolution channel, VIRTIS-H, has for main scientific objectives to study the fine spectral details of the coma and cometary nucleus, with their composition and physical parameters, in parallel with the imaging spectrometer channel VIRTIS-M. The instrument is a cross-dispersor spectrometer, working in the range 2 - 5 micrometers , at about approximately 1200 spectral resolving power. Its design consists of a telescope, an entrance slit, followed by a collimator, and a prism separating 8 orders of a grating
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.