KEYWORDS: James Webb Space Telescope, Space telescopes, Mirrors, Sensors, Telescopes, Space operations, Stars, Observatories, Hubble Space Telescope, Galactic astronomy
The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.
We present an overview of the ACS on-orbit performance based on the calibration observations taken during the first three months of ACS operations. The ACS meets or exceeds all of its important performance specifications. The WFC and HRC FWHM and 50% encircled energy diameters at 555 nm are 0.088" and 0.14", and 0.050" and 0.10". The average rms WFC and HRC read noises are 5.0 e- and 4.7 e-. The WFC and HRC average dark currents are ~ 7.5 and ~ 9.1 e-/pixel/hour at their operating temperatures of - 76°C and - 80°C. The SBC + HST throughput is 0.0476 and 0.0292 through the F125LP and F150LP filters. The lower than expected SBC operating temperature of 15 to 27°C gives a dark current of 0.038 e-/pix/hour. The SBC just misses its image specification with an observed 50% encircled energy diameter of 0.24" at 121.6 nm. The ACS HRC coronagraph provides a 6 to 16 direct reduction of a stellar PSF, and a ~1000 to ~9000 PSF-subtracted reduction, depending on the size of the coronagraphic spot and the wavelength. The ACS grism has a position dependent dispersion with an average value of 3.95 nm/pixel. The average resolution λ/Δλ for stellar sources is 65, 87, and 78 at wavelengths of 594 nm, 802 nm, and 978 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.