This will count as one of your downloads.
You will have access to both the presentation and article (if available).
SEVIRI is the main MSG payload and produces 12 channels imaging in visible and IR range. The 8 Infrared Channels in the 3.9-13.4 mm band benefit from high radiometric performances thanks to the use of detectors operating at 95K and cooled by specifically designed passive radiator. During the commissioning phase, dedicated tests have been conducted to verify the SEVIRI functionality and performances. This paper presents briefly the SEVIRI design and highlights the correlation of data obtained in-flight by EUMETSAT with the ground predictions.
A particular emphasis is put on the in-orbit evolution of the IR channel gains and on the instrument decontamination.
The Limb Infrared Fourier Transform spectrometer (LIFT) will globally provide calibrated spectra of the atmosphere as a function of the tangent altitude.
LIFT field of view will be 30 km × 30 km. The resolution is 30 km in azimuth corresponding to the full field of view, and 2 km in elevation, obtained by using a matrix of 15×15 detectors. The instrument will cover the spectral domain 5.7-14.7 μm through 2 different bands respectively 13.0-9.5 μm, 9.5-5.7 μm.
With a spectral resolution of 0.1 cm-1, LIFT is a high class Fourier Transform Spectrometer compliant with the challenging constraints of limb viewing and spaceborne implementation.
To meet those needs, trade-off’s were performed during the Meteosat Third Generation (MTG) mission study (2003-2005) where preliminary instrument concepts for the Infra-Red Sounding (IRS) mission were investigated allowing at the same time to consolidate the technical requirements for the overall system study. The trade-off’s demonstrated that two types of instrument could fulfill the requirements: a Fourier Transform Spectrometer and a Dispersive Spectrometer.
This paper aims at comparing these two MTG-IRS sensor concepts by highlighting the differences in the constraints imposed on the characteristics and required performance at hardware level. In addition, technology criticalities and some other aspects are discussed qualitatively.
After an initial post-MSG mission study (2003-2004) where preliminary instrument concepts were investigated allowing in the same time to consolidate the technical requirements for the overall system study, a MTG pre-phase A study has been performed for the overall system concept, architecture and programmatic aspects during 2004-2005 time frame.
This paper provides an overview of the outcome of the MTG sensor concept studies conducted in the frame of the pre-phase A. It namely focuses onto the Imaging and Sounding Missions, highlights the resulting instrument concepts, establishes the critical technologies and introduces the study steps towards the implementation of the MTG development programme.
View contact details
No SPIE Account? Create one