The Black Hole Explorer (BHEX) is a next-generation space very long baseline interferometry (VLBI) mission concept that will extend the ground-based millimeter/submillimeter arrays into space. The mission, closely aligned with the science priorities of the Japanese VLBI community, involves an active engagement of this community in the development of the mission, resulting in the formation of the Black Hole Explorer Japan Consortium. Here we present the current Japanese vision for the mission, ranging from scientific objectives to instrumentation. The Consortium anticipates a wide range of scientific investigations, from diverse black hole physics and astrophysics studied through the primary VLBI mode, to the molecular universe explored via a potential single-dish observation mode in the previously unexplored 50-70 GHz band that would make BHEX the highest-sensitivity explorer ever of molecular oxygen. A potential major contribution for the onboard instrument involves supplying essential elements for its high-sensitivity dual-band receiving system, which includes a broadband 300 GHz SIS mixer and a space-certified multi-stage 4.5K cryocooler akin to those used in the Hitomi and XRISM satellites by the Japan Aerospace Exploration Agency. Additionally, the Consortium explores enhancing and supporting BHEX operations through the use of millimeter/submillimeter facilities developed by the National Astronomical Observatory of Japan, coupled with a network of laser communication stations operated by the National Institute of Information and Communication Technology.
This paper presents analytical results of atmospheric turbulence for optical communication links between a geo-stationary earth orbit (GEO) satellite and an optical ground station (OGS) by using a differential image motion monitor (DIMM) method. Optical satellite communications are expected to increase the transmission capacity of satellite-ground communication links. However, atmospheric turbulence degrades the communication performance of satellite-ground optical links. In order to practically utilize satellite-ground optical links, measurement data of atmospheric turbulence are helpful for the optical system design for OGSs. Therefore, we have conducted satellite-ground optical link experiments between the Laser Utilizing Communication System (LUCAS) onboard the optical data relay GEO satellite and an OGS in Okinawa. In this paper, we report preliminary analytical results of the Fried parameter measured by using the DIMM method and provide statistical results of the parameter.
We present concept design of an innovative, compact, non-mechanical optical beam steering antenna with a liquid crystal beam shaper optimized for lean platforms. Laser communication terminals in air and space-borne platforms must fulfil the low-SWaP (size, weight, and power) design philosophy which is often a challenging task when utilizing mechanical steerers like prisms, MEMS fast steering mirrors, lenslet arrays, gimbal movers etc. We introduce the approach of a compact photonics integrated circuit consisting of power division network, optical phase array antennas and liquid crystal on silicon structure to form a laser transmitting module for a CubeSat. An Erbium Doped Fiber Amplifier provide adequate optical power output that can facilitate a baseline free-space communication link margin at 1550nm. The design parameters were tuned to achieve to minimal divergence and adequate beam steering angle, higher EIRP, high beam switching speed and tolerance of space environmental conditions. Applications are numerous and not limited to optical communication terminals on drones, aircrafts, and satellites; automotive LiDAR systems, medical and scientific instrumentation devices are also promising areas of rapid adoption and integration.
NICT is developing the HICALI (High Speed Communication with Advanced Laser Instrument) payload and an optical ground station to demonstrate 10 Gbps-class optical satellite communication between geostationary orbit and the ground. The HICALI payload is planned to be mounted on the Engineering Test Satellite-9 (ETS-9) which will be launched in 2023. In this paper, we present the status of the HICALI payload and optical ground station development and discuss the initial experiment results using a star (Betelgeus), a planet (Venus) and low-Earth orbit satellite-to-ground optical links.
In recent years, the necessity of satellite-to-ground optical communication has increased as a method for realizing higher-speed communications between satellites and the ground. However, one disadvantage of free-space optical (FSO) communication is the significant influence of the atmosphere. FSO communications cannot be utilized under certain atmospheric conditions, such as cloudy skies. One of the solutions to this problem is site diversity, which makes it possible to select a given ground station with better atmospheric conditions among a number of fixed ground stations. The other solution is to prepare a ground station that can be moved to a place with better atmospheric conditions. In this paper, we present the development of a transportable optical ground station currently being researched in NICT.
In order to be transportable, it is necessary to build a system capable of travelling on public roads, installable in every place, and ready to be loaded on relatively-light trucks. For this purpose, a realistic telescope diameter is about 30 cm at the maximum, capable of being set up quickly, and with a pointing accuracy of about 100 μrad. In addition, it is necessary to prepare a fine-pointing optical system that performs tracking with about 1/10 of the pointing accuracy of the telescope. In this research, we will develop the base of the transportable optical ground station using the knowledge of mobile astronomical telescopes. With respect to tracking, we will develop a smaller and lighter fine-tracking system based on NICT’s previous experience. If necessary, we plan to develop an adaptive-optics system for correcting atmospheric disturbances to improve the fiber-coupling efficiency of the communication laser beam.
In National Institute of Information and Communications Technology (NICT) of JAPAN, an ultra high speed optical satellite communication equipment onboard the engineering test satellite IX has been developing. The satellite is planned to be launched to geosynchronous orbit in 2021. In this project, we are aiming for ultra high-speed data transmission at the world's highest level of 10 [Gbps] for both uplink and downlink between optical ground stations and geosynchronous satellite. This paper outlines the optical communication mission, the scheduled optical communication experiment, the examination of HICALI and the ground based system at the present time - the outline of the development situation is also explained.
Recently, satellite broadband communication services using Ka-band are emerging all over the world, some of them with capacities in excess of 100 Gbps. However, as the radio bandwidth resources become exhausted, high-speed optical communication can be used instead to achieve ultra-broadband communications. The National Institute of Information and Communications Technology (NICT) in Japan has more than 20 years of experience in R&D of space laser communications, with important milestones like ETS-VI (Engineering Test Satellite VI), OICETS, and SOTA. We are currently developing a laser-communication terminal called “HICALI”, which goal is to achieve 10 Gbps-class space communications in the 1.5-μm band between Optical Ground Stations (OGSs) and a next generation high-throughput satellite (called ETS-IX) with a hybrid communication system using radio and optical frequencies, which will be launched into a geostationary orbit in 2021. The development of test and a breadboard model for HICALI has been conducted for several years and we are now carrying out an engineering model as well as designing the OGSs segment. In this paper, we describe concepts and current design status of the HICALI system.
Optical Satellite Downlinks have gathered increasing attention in the last years. A number of experimental payloads have become available, and downlink experiments are conducted around the globe. One of these experimental systems is SOTA, the Small Optical Transponder, built by the National Institute of Information and Communications Technology (NICT).
This paper describes the downlink experiments carried out from SOTA to the German Aerospace Center’s Optical Ground Stations located in Oberpfaffenhofen, Germany. Both the Transportable Optical Ground Station (TOGS) as well as the fixed Optical Ground Station Oberpfaffenhofen (OGS-OP) are used for the experiments. This paper will explain the preparatory work, the execution of the campaign, as well as show the first results of the measurements.
In recent years, the performance of observation equipment mounted on satellites has improved to such levels that it can obtain significant amount of data from a single observation [1]. Radio waves are used as a method for transmitting large volumes of data acquired by satellites to the ground. However, currently operational radio frequencies make it difficult to improve the communication speed, owing to interference problems and the carrier frequency. Space optical communication is expected to be a solution to this problem.
Optical transmissions between earth and space have been identified as key technologies for future high data rate transmissions between satellites and ground. CNES is investigating the use of optics both for High data rate direct to Earth transfer from observation satellites in LEO, and for future telecommunications applications using optics for the high capacity Gateway link.
The optical satellite-ground channel is turbulent and causes scintillation of the power received by a ground based telescope. Measurements are important to quantify the effect and evaluate common theory. A telescope with 40 cm primary mirror is used to measure the signals from the OPALS terminal on the International Space Station and the SOTA terminal on the SOCRATES satellite. The measurement instrument is a pupil camera from which images are recorded and intensity scintillation index, power scintillation index, probability density function of intensity and intensity correlation width are derived. A preliminary analysis of measurements from three satellite passed is performed, presented and discussed. The intensity scintillation index ranges from ~0.25 to ~0.03 within elevations of 26 to 66 deg. Power scintillation index varies from ~0.08 to ~0.006 and correlation width of intensity between ~11 and ~3 cm. The measurements can be used to estimate the fluctuation dynamics to be expected for a future operational ground receiver. The measurements are compared to model calculations based on the HV5/7-profile. Good agreement is observed to some part in the intensity scintillation index. Agreement is less for the power scintillation index and intensity correlation width. The reason seems to be a reduction of aperture averaging in some sections of the measurements due to increased speckle size. Finally, topics for future work are identified to improve the measurement analysis and deeper investigate the origin of the observed behavior.
In collaboration between CNES, NICT, Geoazur, the first successful lasercom link between the micro-satellite SOCRATES and an OGS in Europe has been established. This paper presents some results of telecom and scintillation first data analysis for 4 successful links in June & July 2015 between SOTA terminal and MEO optical ground station (OGS) at Caussols France. The telecom and scintillation data have been continuously recorded during the passes by using a detector developed at the laboratory. An irradiance of 190 nW/m2 and 430 nW/m2 has been detected for 1549 nm and 976 nm downlinks at 35° elevation. Spectrums of power fluctuation measured at OGS are analyzed at different elevation angles and at different diameters of telescope aperture to determine fluctuations caused by pointing error (due to satellite & OGS telescope vibrations) and caused by atmospheric turbulence. Downlink & Uplink budgets are analyzed, the theoretical estimation matches well to measured power levels. Telecom signal forms and bit error rates (BER) of 1549 nm and 976 nm downlink are also shown at different diameters of telescope aperture. BER is 'Error Free' with full-aperture 1.5m telescope, and almost in ‘good channel’ with 0.4 m sub-aperture of telescope. We also show the comparison between the expected and measured BER distributions.
Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.