We report the performance of silicon-on-insulator medium-length extended microcavity (3 to 4.5 μm long) one-dimensional photonic crystal waveguide. Quality-factor (Q-factor) values ranging from 2000 to 37,000 were observed. The waveguides/wire were fabricated using an inductively coupled plasma reactive ion etching with SF6 and C4F8 gasses. Optical transmission of the design is heavily influenced by the surface roughness of the waveguide wall. We achieved a good free spectral range control for resonance frequency separations in between 39 and 65 nm. Supported and suspended microcavity structures for the case of a medium-length extended microcavity were compared. We observed an inferior performance in terms of the optical transmission and Q-factor in the latter. We have selected 4-μm microcavity length for comparison. The suspended structure was obtained by utilizing the wet etching technique on the same device. A high Q-factor value of ∼26,000 was observed in one of the resonances excited for cladding-layer supported extended microcavity. However, the Q-factor was reduced to ∼17,000 after removing the silica cladding beneath the silicon waveguide core.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.