Multi-pixel short-wave infra-red (SWIR) Geiger-mode avalanche photodiode (GmAPD) light detection and ranging (LIDAR) cameras have enabled unprecedented sensing capabilities in commercial and government platforms. Ball Aerospace develops and produces state-of-the-art SWIR synchronous and asynchronous single photon counting GmAPD arrays for variety of active and passive imaging applications. This work demonstrates the advantage of asynchronous arrays which is based on individual pixel continuous photon sampling functionality and the underlying read-out integrated circuit (ROIC). The benefit is based on user-selectable pixel hold-off (reset) time (tunable from ~250 ns to beyond ~5 µs) that determines aggregate pixel availability and noise performance. Single photon sensitivity and precise sub-nanosecond photon arrival timing for each pixel in the array enables advanced active and passive systems with unparalleled engagement ranges as well as novel imaging methods.
Geiger-mode Avalanche Photodiode (GmAPD) sensors operating in the short-wave infrared wavelength range provide single-photon sensitivity along with precise time-of-flight measurement capability. Cameras built from such sensors are uniquely suited for use in LIDAR systems. We present the development of a computational model of a GmAPD device. We apply this model to identify and optimize key parameters in the epitaxial growth structure, with the goal of producing maximum photon detection efficiency while maintaining a low dark count rate. These simulations suggest a modest design adjustment will result in a relative increase in detection efficiency of more than 15% at typical operating bias voltage, when compared to a legacy control design. A new epitaxial growth and device fabrication campaign has been executed to test the results of the simulation. We will present test results from sensor devices fabricated from both the optimized and control designs.
In this work, we compare the performance of three MWIR unipolar barrier structures based on the InAs/GaSb Type-2 strained layer superlattice material system. We have designed, fabricated, and characterized pBiBn, pBn, and pBp detector structures. All the structures have been designed so that the cut off wavelength is around 5 microns at 100 K. We fabricated single-pixel devices and characterize their radiometric performance. In addition, we have characterized the degradation of the performance of the devices after exposing the devices to 63 MeV proton radiation to total ionizing dose of 100 kRad (Si). In this report, we compare the performance of the different structures with the objective of determining the advantages and disadvantages of the different designs. This work was supported by the Small Business Innovation Research (SBIR) program under the contract FA9453-14-C-0032, sponsored by the Air Force Research Laboratory (AFRL).
We report on the development of dual-band InAs/GaSb type-II strained layer superlattices (T2SL) detectors with barrier designs at SK Infrared. Over the past five years, we demonstrated mid-wave/long-wave (MW/LWIR, cut-off wavelengths are 5 μm and 10.0 μm), and LW/LWIR (cut-off wavelengths are 9 μm and 11.0 μm) detectors with nBn and pBp designs. Recent results include a high performance bias-selectable long/long-wavelength infrared photodetector based on T2SL with a pBp barrier architecture. The two channels 50% cut-off wavelengths were ~ 9.2 μm and ~ 12 μm at 77 K. The “blue” and “red” LWIR absorbers demonstrated saturated QE values of 34 % and 28 %, respectively, measured in a backside illuminated configuration with a ~ 35 μm thick layer of residual GaSb substrate. Bulk-limited dark current levels were ~ 2.6 x 10-7 A/cm2 at + 100 mV and ~ 8.3 x 10-4 A/cm2 at - 200 mV for the “blue” and “red” channels, respectively.
In this work, we report on the design, fabrication, and characterization of MWIR unipolar barrier photodetectors based on InAs/GaSb Type-II superlattice. We have designed, fabricated, and characterized band-structure engineered MWIR photodetectors based on the pBiBn architecture. The devices have been characterized using the most relevant radiometric figures of merits. At 200 K, the peak value of detectivity is 1.2 x 1011 Jones at an applied bias voltage of -0.5 V.
The realization of high operating temperature (HOT) midwave infrared (MWIR) photodetectors would significantly relax the requirements imposed on the cooling system, which would lead to a reduction in the size, weight, and cost of the detection system. One of the most attractive material systems to develop HOT photodetectors is InAs/GaSb Type II Superlattice (T2SL). This is due the ability of T2SL materials to engineer the band structure of the device, which can be exploited to make devices with unipolar barriers. It has been shown that the use of unipolar barriers can dramatically reduce the dark current levels of the device, which is essential to realize HOT photodetectors. In this work, we report on the performance of a unipolar barrier mid wave infrared detector based on type-II InAs/GaSb strained layer superlattice for high operating temperatures. The device architecture is the double-barrier heterostructure, pBiBn design. Under an applied bias of -10 mV and an operating temperature of 200 K, the best performing devices show a dark current density of 4.9×10-4 A/cm2. At 200 K, the measured zero-bias specific detectivity was 4.4×1010 Jones.
Midwave infrared (MWIR) photodetectors that do not require cryogenic cooling would significantly reduce the complexity of the cooling system, which would lead to a reduction in the size, weight, and cost of the detection system. The key aspect to realize high operating temperature (HOT) photodetectors is to design device structures that exhibit significantly lower levels of dark current compared to the existing technologies. One of the most attractive material systems to develop HOT photodetectors is InAs/GaSb Type II Strained layer Superlattice (SLS). This is due the ability of Type II SLS materials to engineer the band structure of the device, which can be exploited to make devices with unipolar barriers. It has been shown that, compared to the traditional homojunction SLS devices, band-gap engineered unipolar barrier SLS devices can obtain significantly lower levels of dark current. In this work, we report on the design, growth, and fabrication of mid wave infrared detectors based on type-II InAs/GaSb strained layer superlattice for high operating temperatures. The device architecture is the double-barrier heterostructure, pBiBn design. Under an applied bias of -10 mV and an operating temperature of 200 K, the tested devices show a dark current density of 4 x 10-3 A/cm2 and a quantum efficiency of 27%. At 4.5 μm and 200 K, the devices show a zero-bias specific detectivity of 4.4 x 1010 Jones.
Recently, considerable attention has been placed upon exploiting the negative-feedback effect in accelerating the
quenching time of the avalanche current in passively quenched single-photon avalanche-diode (SPAD) circuits.
Reducing the quenching time results in a reduction in the total charge generated in the SPAD, thereby reducing the
number of trapped carries; this, in turn, can lead to improved after-pulsing characteristics. A passively quenched SPAD
circuit consists of a DC source connected to the SPAD, to provide the reverse bias, and a series load resistor. Upon a
photon-generated electron-hole pair triggering an avalanche breakdown, current through the diode and the load resistor
rises quickly reaching a steady state value, after which it can collapse (quench) at a stochastic time. In this paper we
review recent analytical and Monte-Carlo based models for the quenching time. In addition, results on the statistics of
the quenching time and the avalanche pulse duration of SPADs with arbitrary time-variant field across the multiplication
region are presented. The calculations of the statistics of the avalanche pulse duration use the dead-space multiplication
theory (DSMT) to determine the probability of the avalanche pulse to quench by time t after the instant s at which the
electron-hole pair that triggers the avalanche was created. In the analytical and Monte-Carlo based models for the
quenching time, the dynamic negative feedback, which is due to the dynamic voltage drop across the load resistor, is
taken into account. In addition, in the Monte-Carlo simulations the stochastic nature of the avalanche current is also
considered.
Infrared single-photon avalanche photodiodes (SPADs) are used in a number of sensing applications such as satellite
laser ranging, deep-space laser communication, time-resolved photon counting, quantum key distribution and quantum
cryptography. A passively quenched SPAD circuit consists of a DC source connected to the SPAD, to provide the
reverse bias, and a series load resistor. Upon a photon-generated electron-hole pair triggering an avalanche breakdown,
current through the diode and the load resistor rises quickly reaching a steady state value, after which it can collapse
(quench) at a stochastic time. In this paper we review three recent analytical and Monte-Carlo based models for the
quenching time. In the first model, the applied bias after the trigger of an avalanche is assumed to be constant at the
breakdown bias while the avalanche current is allowed to be stochastic. In the second model, the dynamic negative
feedback, which is due to the dynamic voltage drop across the load resistor, is taken into account, albeit without
considering the stochastic fluctuations in the avalanche pulse. In the third model, Monte-Carlo simulation is used to
generate impact ionizations with the inclusion of the effects of negative feedback. The latter model is based on
simulating the impact ionizations inside the multiplication region according to a dynamic bias voltage that is a function
of the avalanche current it indices. In particular, it uses the time evolution of the bias across the diode to set the
coefficients for impact ionization. As such, this latter model includes both the negative feedback and the stochastic
nature of the avalanche current.
We report new results on the design, fabrication and characterization of a novel midinfrared sensor called quantum
dot avalanche photodiode (QDAP). The QDAP consists of a quantum dots-in-a-well (DWELL) detector coupled
with an avalanche photodiode (APD) through a tunnel barrier. In the QDAP, the photons are absorbed in the
DWELL active region while the APD section provides photocurrent gain. Spectral response and photocurrent
measurements at 77 K were taken to characterize the response of the device. The increase of the spectral response
and the nonlinear increase in the photocurrent as the APD voltage increases support theoretical predictions about
the QDAP capability to work in Geiger mode. The QDAP photocurrent is similar to the IV characteristic of the
APD section, indicating gain in the device.
This paper discusses recent and future advancements in the field of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs). Additionally, for clarity sake, the fundamentals of FPA figures of merit are reviewed. The DWELL detector represents a hybrid between a conventional quantum well photodetector (QWIP) and a quantum dot (QD) photodetector (QDIP). This hybridization, where the active region consists of QDs embedded in a quantum well (QW), grants DWELLs many of the advantages of its components. This includes normally incident photon sensitivity without gratings or optocoupers, like QDIPs, and reproducible control over operating wavelength through 'dial-in recipes' as seen in QWIPs. Conclusions, drawn by the long carrier lifetimes observed in DWELL heterostructures using femtosecond spectroscopy, have recently backed up by reports of high temperature operation results for DWELL FPAs. This paper will conclude with a preview of some upcoming advances in the field of DWELL focal plane arrays.
We report Quantum Dot Infrared Detectors (QDIP) where light coupling to the self assembled quantum dots
is achieved through plasmons occurring at the metal-semiconductor interface. The detector structure consists
of an asymmetric InAs/InGaAs/GaAs dots-in-a-well (DWELL) structure and a thick layer of GaAs sandwiched
between two highly doped n-GaAs contact layers, grown on a semi-insulating GaAs substrate. The aperture of
the detector is covered with a thin metallic layer which along with the dielectric layer confines light in the vertical
direction. Sub-wavelength two-dimensional periodic patterns etched in the metallic layer covering the aperture
of the detector and the active region creates a micro-cavity that concentrate light in the active region leading
to intersubband transitions between states in the dot and the ones in the well. The sidewalls of the detector
were also covered with metal to ensure that there is no leakage of light into the active region other than through
the metal covered aperture. An enhanced spectral response when compared to the normal DWELL detector
is obtained despite the absence of any aperture in the detector. The spectral response measurements show
that the Long Wave InfraRed (LWIR) region is enhanced when compared to the Mid Wave InfraRed (MWIR)
region. This may be due to coupling of light into the active region by plasmons that are excited at the metal-semiconductor
interface. The patterned metal-dielectric layers act as an optical resonator thereby enhancing the
coupling efficiency of light into the active region at the specified frequency. The concept of plasmon-assisted
coupling is in principle technology agnostic and can be easily integrated into present day infrared sensors.
In our research group, we develop novel dots-in-a-well (DWELL) photodetectors that are a hybrid of the quantum dot
infrared photodetector (QDIP). The DWELL detector consists of an active region composed of InAs quantum dots
embedded in InGaAs quantum wells. By adjusting the InGaAs well thickness, our structure allows for the manipulation
of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum)
of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and
fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of
New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC) in collaboration
with QmagiQ LLC and tested with a CamIRaTM system manufactured by SE-IR Corp. From this evaluation, we report
the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a
single FPA. We demonstrated that we can operate the device at an intermediate bias (Vb=-1.25 V) and obtain two color
response from the FPA at 77K. Using filter lenses, both MWIR and LWIR responses were obtained from the array at the
same bias voltage. The MWIR and LWIR responses are thought to be from bound states in the dot to higher and lower
lying states in the quantum well respectively. Temporal NEDT for the DWELL FPA was measured to be 80mK at 77K.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.