The 4m class New Robotic Telescope (NRT) is an optical facility designed to revolutionize the rapid follow-up and classification of variable and transient objects. The project is at the stage where key systems are progressing through their detailed design phases, which presents a major engineering challenge for all project partners to manage design progress of the high-level interfacing systems while still ensuring the delivery of top-level science requirements. The freezing of key system architecture features at the preliminary design review in 2021 has allowed significant progress to be made towards a target of Engineering First Light (EFL) in 2027. The project critical path is currently driven by the optics and the enclosure. Both of these components are novel in design: the NRT will have an 18-segment primary mirror and a large, fully-opening clamshell enclosure. Particular progress has been made regarding enclosure design, software & control, science & operations software and the focal station and associated science support instrumentation. The Critical Design Review for the M3 (fold mirror) was completed Q4 2022 which enabled manufacturing of the first NRT glassware to begin and prototyping of the complete opto-mechanical, hardware and software subsystem for its control to take place. The NRT will join the 2m Liverpool Telescope on La Palma, and as such this existing facility has been exploited to prototype the new science operations user interface and the NRT wavefront sensor.
The New Robotic Telescope (NRT), the 4-metre, next-generation Liverpool Telescope (LT), will be located on La Palma, Canary Islands. The design and development of the world’s largest robotic telescope, with a slew speed of approximately 10 degrees/second, poses challenges that have resulted in innovative design concepts, including the scheduling algorithms used for optimal science efficiency. We present the latest updates for the NRT project, focusing, in particular, on the status of the observing model which is being adapted from the existing LT model. The catalogue of LT data taken over the past 18 years is being used to model the observing behaviour of the facility and to act as input data for the future NRT scheduling algorithm. This algorithm will combine the existing LT observing model with a new facility Key Science Program, which will conduct rapid-response spectroscopic classifications of a variety of survey targets, transient alerts and variables.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.