We present a report on the current development status of the ALMA Observing Tool, describing how the tool operates as
an integrated environment for proposal and program preparation. The paper also covers the science-oriented graphical
tools for both spatial and spectral setup, their system-oriented equivalents, local oscillator and correlator setup assistants
as well as program validation.
Multi-object instruments provide an increasing challenge for pick-off technology (the means by which objects are selected in the focal plane and fed to sub-instruments such as integral field spectrographs). We have developed a technology demonstrator for a new pick-off system. The performance requirements for the demonstrator have been driven by the outline requirements for possible ELT instruments and the science requirements based on an ELT science case. The goals for the pick-off include that the system should capable of positioning upwards of one hundred pick-off mirrors to an accuracy better than 5 microns. Additionally, the system should be able to achieve this for a curved focal surface -- in this instance with a radius of curvature of 2m.
This paper presents the first experimental results from one of the approaches adopted within the Smart Focal Plane project -- that of a Planetary Positioning System. This pick-and place system is so called because it uniquely uses a combination of three rotation stages to place a magnetically mounted pick-off mirror at any position and orientation on the focal surface. A fixed angular offset between the two principal rotation stages ensures that the pick-off mirror is always placed precisely perpendicular to the curved focal plane. The pick-off mirror is gripped and released by a planar micromechanical mechanism which is lowered and raised by a coil-actuated linear stage.
A number of tools exist to aid in the preparation of proposals and observations for large ground and space-based observatories (VLT, Gemini, HST being examples). These tools have transformed the way in which astronomers use large telescopes. The ALMA telescope has a strong need for such a tool, but its scientific and technical requirements, and the nature of the telescope, provide some novel challenges. In addition to the common Phase I (Proposal) and Phase II (Observing) preparation the tool must support the needs of the novice alongside the needs of those who are expert in millimetre/sub-millimetre aperture synthesis astronomy. We must also provide support for the reviewing process, and must interface with and use the technical architecture underpinning the design of the ALMA Software System. In this paper we describe our approach to meeting these challenges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.