The results of applying three nondestructive testing techniques to the inspection of parts of a new Russian TVS-2DTS airplane made of carbon fiber reinforced plastic are presented. A basic technique implemented in workshop conditions implements optical stimulation of inspected parts. The usefulness of ultrasonic infrared thermography combined with laser vibrometry in the evaluation of parts with complicated geometry is illustrated. Samples with artificial and real defects have been tested in workshop conditions.
The use of wide frequency band piezoelectric transducers in ultrasonic infrared thermography allows analyzing material structural defects under low power ultrasonic stimulation compared to single-frequency stimulation which is performed, for example, by means of powerful magnetostrictive stimulation. Defect resonance frequencies can be determined through the detailed analysis of material surface vibrations by using a technique of laser vibrometry in a wide range of frequencies. This paper describes the approach to analyze ultrasonic resonances in samples with hidden defects by using resonant piezoelectric transducers. The effectiveness of the method is assessed by discussing some key examples of impact damaged graphite/epoxy composite samples hybridized with flax fibers. Optical and powerful ultrasonic stimulation have been also used as alternative inspection techniques.
"Classical" IR ultrasonic thermography is based on applying a relatively powerful ultrasonic stimulation to test objects. Attempting to expand an inspection area by further increasing ultrasonic power may lead to sample damage, particularly, at a stimulation point. The recently proposed low-power resonant ultrasonic vibrothermography method involves an individual approach to the inspection of materials being based on a detailed analysis of vibrations on the sample surface in a wide range of acoustic frequencies. The determination of defect resonance frequencies enables efficient transfer of acoustic wave energy into a defect area and further transformation of this energy into heat due to intensive plastic deformations and internal friction. This paper contains the results of applying low-power ultrasonic IR thermography to detecting impact damage in graphite epoxy composite by using techniques of laser vibrometry and IR thermography.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.