We present a new single-chip diaphragm-type Fabry-Perot microcavity pressure sensor with a novel single deeply corrugated diaphragm. Both analytical and experimental results have shown that some common issues, such as signal-averaging effect and cross-sensitivity to temperature with diaphragm-type Fabry-Perot microcavity pressure sensors, can be substantially alleviated by the proposed technique.
In this study, an analytical model, taking into account the coupled photoelastic and thermal-optical effects, is established to evaluate the temperature dependence of a single-chip silicon micromachined Fabry-Perot pressure sensor. The results show that temperature variation has significant impact on the micromachined Fabry-Perot pressure sensor with conventional flat diaphragm. A new membrane-type silicon micromachined Fabry-Perot pressure sensor with a novel deeply corrugated diaphragm is then proposed. The sensor is fabricated on a single-chip using both surface- and bulk-micromachining techniques. Both analytical and experimental results show that the cross-sensitivity to temperature of Fabry-Perot pressure sensors, can be substantially alleviated by the proposed single deeply corrugated diaphragm/mirror.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.