The effect of sympathetic activation of sweat glands on the spatio-temporal distribution of skin temperature was studied. The practical significance of the study of sweat glands is supported by the fact that each sweat gland is controlled by the sympathetic cholinergic nerve. Dysfunction of the sympathetic nerve leads to inhibition of the activity of the sweat glands and accompanies many common diseases. In this study, the statistical and spectral properties of the dynamic infrared thermogram of skin with eccrine sweat glands during deep inspiratory gasp (breath test) were investigated. The number of open sweat pores was used as a ground truth measure for the activity of the sweat glands. Results: We found that the activation of the sweat glands, which characterizes the enhancement of the sympathetic response, leads to a change in the statistical spatial distribution of temperatures on the surface of the human body. The histogram of temperature showed a shift to the low-temperature region with a simultaneous increase in the standard deviation. The possibility of using the standard deviation and the skewness (asymmetry of the histogram) to assess the dynamics of the activity of sweat glands was shown. For the first time, the Statistical Pore Activation Index (SPAI) was introduced, which is more adaptive and shows greater accuracy than skewness. The activity of the sweat glands resulted in the appearance of spectral components within the region near 0.1 Hz, which is not typical for oscillations in skin temperature caused by hemodynamics. The results can be used for spectral separation of thermographic data from components caused by hemodynamics and activity of the sweat glands (vasomotor and sudomotor activities). Filtering the dynamic thermograms based on the investigated spectral and statistical features might serve as a method of mathematical processing for mapping the sweat glands and blood vessels on the skin surface. This might be used as a new diagnostic tool in the field of physiology and medicine.
The essence of the phenomenon of ischemic preconditioning is increasing myocardium resistance to long periods of ischemia that occurs after several short ischemia-reperfusion periods. The aim of this pilot study was to determine the temperature and vascular response in double brachial occlusions and to assess the prospects of using this maneuver for remote ischemic preconditioning. Infrared thermography-based measurements were used to assess hemodynamics both left and right hands during the baseline, ischemia and hyperemia periods. Double ischemia with a period of 2 min was implemented by a cuff compression of the brachial artery of the right hand. A study group was constituted of eight men and six women without cardiovascular abnormalities at the age of 22 to 35 years. As a result, we have determined that a temperature and vascular response to ischemia of right hand is accompanied by the vascular reaction of the contralateral left hand, especially after the inflation and deflation of the cuff. These vascular reactions are reproducible, systemic and appear to be at least neurological in nature. An experimental confirmation of the systemic vascular «training effect» after multiple brachial ischemia-reperfusion periods is a subject of further investigations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.