The study of the atomic spectrum via resonant laser excitation provides access to underlying effects caused by the nuclear structure, which is of special interest in short-lived radioisotopes produced at Isotope Separator On-Line (ISOL) facilities. Current implementations of resonant laser ionization techniques often limit the extraction of the nuclear observables due to the low spectral resolution of the pulsed laser systems deployed. Several high-resolution spectroscopy techniques demand spectral widths in the order of hundreds of MHz and below. A proven solution to reduce this linewidth is the pulsed amplification of a narrow-band continuous wave (cw) laser. This work presents the demonstration of a pulsed dye amplifier seeded by a commercially available cw Optical Parametric Oscillator (OPO). The performance of this system was compared with competing setups using a cw dye laser seed source as well as a frequency mixing technique using a combination of an injection-locked titanium:sapphire (Ti:Sa) and a Nd:YVO4 laser. Spectral bandwidths of the systems were measured using a high finesse Fabry-Perot Interferometer, resulting in comparable optical linewidths between 140 to 156 MHz at a wavelength of 328 nm for the different laser setups. Suitability for on-line experiments was validated by performing high-resolution spectroscopy of radioactive silver isotopes in the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the Isotope Separator On-Line Device (ISOLDE), at the European Organization for Nuclear Research (CERN). The quality of the hyperfine spectra was similar for the dye and the OPO seed and the deduced hyperfine splitting was in good agreement with literature, while the frequency mixing technique exhibited less precise results attributed to the frequency instabilities and mode-hops of the single-mode Nd:YVO4 laser.
We identified eight nonlinear crystals enabling THz emission from quadratic phase-matched Difference-Frequency-Generation: YCOB, BNA, LBO, CSP, AGS, CdSe, ZnO and GaP. For all these crystals, we performed Time-Domain Spectroscopy in the same conditions to determine their absorption spectra in polarized light as well as their principal refractive indices as a function of wavelength in the 0.5-2.0 THz range. By combining previous data with the Sellmeier equations valid in their visible and infrared transparency ranges, we calculated the coherence length of Difference-Frequency-Generation associated to all possible configurations of polarization and found interesting and complementary phase-matching conditions in the eight studied crystals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.