To improve the detection rate of small target in infrared image, this paper proposes an infrared small target detection algorithm based on the fusion of multiple saliency information, which combines local contrast measure (LCM), curvature filtering and motion saliency. Firstly, three saliency maps of the infrared image are calculated separately to prepare for the next advantages integration. Then, to improve the contrast of the target, the LCM saliency map and curvature saliency map are filtered according to the motion saliency value. Finally, the fusion weight is determined by the background suppression factor of the saliency map so that the fusion saliency map is obtained. Experimental results show that the proposed infrared small target algorithm outperforms other comparing methods in terms of detection capability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.