For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.
The forked grating coupler (FGC) is a novel low-profile device compatible with silicon photonics that is capable of sensitive detection or efficient radiation of Optical Vortex (OV) light beams conveying orbital optical angular momentum (OAM). The FGC device combines the idea of a Bragg coupler with the forked hologram to create an integrated optics device that can selectively and efficiently couple selected optical vortex modes at near-normal incidence into planar confined dielectric waveguide modes of a photonic IC. FGCs retain many of the advantages of Bragg couplers, including convenience of placement and fabrication, reasonable bandwidth, small size, and CMOS process compatibility. In this work, prototype designs of FGC structures for 1550 nm wavelength have been developed for implementation on silicon on insulator (SOI) substrate. Fully vectorial three-dimensional (3D) electromagnetic simulation has allowed performance to be optimized over a range of structural parameters. Results have been evaluated against optical performance metrics including overall efficiency, mode match efficiency, and crosstalk between OV modes. Candidate FGC devices have been fabricated on SOI with e-beam lithography and tested optically. Tolerance to etch depth error has been evaluated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.