We report the development of an optical assembly and driving electronics for a low-SWaP polarization encoder design for use in satellite-to-ground quantum communication. The optical design multiplexes multiple lasers, which are selectively excited to produce a polarization encoded output. This implementation is intrinsically stable due to the use of only polarization maintaining fiber in the combining optics. The transmitter, provides a low-cost, low-power and high-speed platform to produce polarization encoded pulses. We use the transmitter to generate 4 polarization states with 2 intensity levels via multiplexing of 8 pulsed light sources. The module can generate the polarization states H, V, D and A, which correspond to polarization angles of 0, 90, 45 and -45 degrees respectively, forming two mutually unbiased bases. The transmitter is characterized via a polarization decoder over a free-space link within a laboratory setting. We characterize the source for varying optical channel loss which is introduced between the transmitter and receiver. The transmitter employs the T12 decoy-state BB84 protocol. We explore the performance of the system with commercially available single photon detectors for two clock rates of 500 MHz and 1 GHz. We find a similar secure key rate for both repetition rates, despite the expected 3 dB gain at 1 GHz. This is a result of detector jitter hindering the performance of the QKD system, resulting in a larger QBER when detection events leak into the adjacent time bins and ultimately reduces the secure key rate.
Recent advances in pointing and tracking capabilities of small satellite platforms have enabled adoption of capabilities such as high-resolution Earth Observation (EO), inter-satellite laser communications and, more recently, quantum communications. Quantum communications requires unusually narrow optical beams and tight pointing performance (on the order of ten microradians) to close an inherently brightness-limited quantum link. This limit is due to quantum communication protocols such as quantum key distribution and teleportation requiring individual quantum states to be transmitted with photon number restrictions. We examine an opportunity to combine quantum communications with laser communications in sharing an optical link. We discuss a combined quantum and laser communication terminal capable of performing space-to-ground entanglement-distribution and high data rate communications on a 12U CubeSat with a 95mm beam expander and an 60 cm aperture optical ground telescope. Photon pairs produced by the quantum terminal are entangled in polarization so the polarization must be maintained throughout the optical link. We discuss active and passive compensation methods in space and polarization reference frame correction using a polarized reference beacon at the ground station. The combined quantum and laser communication terminal approach enables secure communications over an optical channel with rates of 100 Mbps and sub-nanosecond time transfer.
Quantum sources and receivers operating on-board satellites are an essential building block for global quantum networks. SpooQy-1 is a satellite developed at the Centre for Quantum Technologies, which has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform. This miniaturized and ruggedized photon pair source is being upgraded to be capable of space-to-ground quantum key distribution and long-range entanglement distribution. In this paper, we share results from SpooQy-1, discuss their relevance for the engineering challenges of a small satellite quantum node, and report on the development of the new light source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.