Automation of systematic scoring of breast glandularity on CT thorax examinations performed for another clinical reason could aid in detecting postmenopausal women with increased breast cancer risk. We propose a novel method that combines automated deep learning based breast segmentation from CT thorax examinations with computation of breast glandularity based on radiodensity and volumetric breast density. Reasonable segmentation Dice scores were found as well as very strong correlation between the risk measures computed on the ground truth and with the proposed approach. Hence, the proposed method can offer reliable breast cancer risk measures with limited additional workload for the radiologist.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.