With the ever growing occurrences of skin cancer and limited healthcare settings, a reliable computer assisted diagnostic system is needed to assist the dermatologists for lesion diagnosis. Skin lesion segmentation on dermo- scopic images can be an efficient tool to determine the differences between benign and malignant skin lesions. The dermoscopic images in the public skin lesion datasets are collected from various sources around the world. The color of lesions in dermoscopic images can be strongly dependent on the light source. In this work, we provide a new insight on the effect of color constancy algorithms on skin lesion segmentation with deep learning algorithm. We pre-process the ISIC Challenge Segmentation 2017 dataset using different color constancy algorithms and study the effect on a popular semantic segmentation algorithm, i.e. Fully Convolutional Networks. We evaluate the results with two evaluation metrics, i.e. Dice Similarity Coefficient and Jaccard Similarity Index. Overall, our experiments showed improvements in semantic segmentation of skin lesions when pre-processed with color constancy algorithms. Further, we investigate the effect of these algorithms on different types of lesions (Naevi, Melanoma and Seborrhoeic Keratosis). We found pre-processing with color constancy algorithms improved the segmentation results on Naevi and Seborrhoeic Keratosis, but not Melanoma. Future work will seek to investigate an adaptive color constancy algorithm that could improve the segmentation results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.