KEYWORDS: Telescopes, Mirrors, Space telescopes, Signal to noise ratio, Infrared telescopes, Optical fabrication, Observatories, Optical instrument design, Infrared radiation, James Webb Space Telescope
The WFIRST Mission is the next large astrophysical observatory for NASA after the James Webb Space Telescope and is the top priority mission from the 2010 National Academy of Sciences’ decadal survey. The WFIRST OTA includes the inherited primary and secondary mirrors with precision metering structures that are to be integrated to new mirror assemblies to provide optical feeds to the two WFIRST instruments. We present here: (1) the results for the review of the inherited hardware for WFIRST through a thorough technical pedigree process, (2) the status of the effort to establish the capability of the telescope to perform at a cooler operational temperature of 265K, and (3) the status of the work in requirement development for OTA to incorporate the inherited hardware, and (4) the path forward.
The Wide-Field Infrared Survey Telescope (WFIRST) mission is the next large astrophysics observatory for NASA after the James Webb Space Telescope and is the top priority mission from the 2010 National Academy of Sciences’ decadal survey. The WFIRST Optical Telescope Assembly (OTA) includes inherited composite support structures that were originally designed and tested for room temperature operation; however, the WFIRST mission will require operation at colder temperatures to achieve sufficient sensitivity for the infrared wavelengths. We will present the results and conclusions of testing completed at the coupon and engineering model level to verify that the inherited composite structures will maintain mechanical integrity and performance over the required temperature range. The testing included: (1) characterization testing of constituent material coupons, (2) thermal cycling and static load testing of a representative aft metering structure (AMS) and forward metering structure (FMS), and (3) thermal cycling and dynamic testing of a representative secondary mirror assembly (SMA).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.