Structured light systems (SLS) have become increasingly important for three-dimensional shape measurements. A quantitative evaluation of the spatial resolution is also becoming increasingly important. The spatial frequency response of the instrument is a reasonable metric for resolution and is commonly referred to as the instrument transfer function (ITF). In this paper, we present a methodology to estimate the ITF of a commercial SLS (the EinScan-Pro 3D Scanner) and its uncertainty. A measurement of a step artifact is used for the ITF estimation. We also discuss a method to check the validity of the artifact used for the measurement. The ITF dependence on step orientation and position in the measurement volume is also presented, in addition to a comparison between ITF and the modulation transfer function (MTF) for the cameras in the instrument.
When fringe projection profilometry is used for measuring rough/textured surfaces, the fidelity of the measurement is subject to the spatial frequency response. The instrument transfer function (ITF) is one appealing approach to characterize this property. The foundation of ITF analysis is based on the linear theory; only linear systems are appropriate for ITF analysis. A fringe projection system is intrinsically nonlinear, but it can be approximated as a linear system when certain conditions are met. Here we investigate the linear conditions of a custom fringe projection system designed for an additive manufacturing application. The applicability of ITF is discussed through mathematical analysis and simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.