The planar lightwave circuit (PLC) on silicon substrate offers a promising on-chip integrated solution to polarization-mode dispersion (PMD) compensation for long haul high speed communications. A novel cascaded PLC based PMD compensator is proposed in this paper and a detailed statistical analysis of PMD generated by cascaded PLC circuits is presented. Using Gisin and Pellaux's approach the distributions of first-order PMD produced by various multiple-stage PLC circuits were obtained by Monte Carlo simulation with respect to the phase shift introduced by heating elements in the circuits. The generated PMD was compared with a standard Maxwell distribution and that of a 12-stage nonlinear crystal based PMD compensator. It was found that a 3-stage cascaded PLC circuit yields a performance close to that of the crystal-based PMD compensator, while with a significant reduction in packaged size and enhancement in stability.
Basing on the method of wavelength and beam direction encoding for implementing a bipolar optical neural network, a liquid crystal light value (LCLV) is used to encode the positive and negative light spots by adding relevant light biases so as to obtain the normal and inverse states, respectively. Then, the two modulated light spots in the same group are moved together by using a grating or a lenslet array. The overlapped light spot whose power is just the expected subtractive results of positive and negative weighted summation can be obtained. Taking advantage of said method, parallel operation between positive and negative light spots can be fulfilled. Due to the high discrimination and quick responsibility of LCLV, system operation speed can be greatly enhanced in optical neural network on a large scale. The feasibility is demonstrated by the preliminary experiment.
Low voltage reactive plasma assisted deposition (RPAD) is used here, to deposit the optical- electric films, such as transparent conductive thin films and Si3N4 films. Comparing to other thermal evaporation techniques, RPAD can produce more easily such kind of opto- electric thin films. Experimental results of the films deposited will be presented in this paper.
Low voltage plasma assisted evaporation (PAE) technique has been investigated as an effective evaporation technique for the deposition of oxide films of high optical performance. The PAE process consists of an electron beam evaporator and a large current plasma source. The guided wave method is used to measure the refractive index and attenuation coefficients of guided modes of some oxide films deposited by PEA. The experimental systems and results are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.