Results are presented from a horizontal path imaging experiment in which a 0.5-m telescope was focused on targets located at a range of 1 .2 km. The targets varied in complexity from simple binary letters to extended representations of satellites with gray scale and size variations. Imaging at a center wavelength of 0.7 μm, we found an atmospheric degradation factor of D/r0 = 17, on average. We used a slow read-rate bare CCD detector and thus had to deal effectively with additive noise in the speckle measurements. Our image reconstruction algorithms are based on the use of the complex bispectrum, and we have demonstrated diffraction-limited imaging down to light levels approaching a few photons per speckle per resolution area. We have paid careful attention to the effects of additive noise on the reconstruction process and have shown that they can be adequately overcome. These results support the feasibility of high-resolution speckle imaging of high-earth-orbit satellites using CCDs.
Results will be presented from a horizontal path imaging experiment in which we used a 0.5 meter
telescope focused on a target located at a range of 1 .2 km. The targets included various extended objects
from simple binary letters to extended representations of satellites with grey scale and size variations.
Imaging at a center wavelength of 0.7 microns, we found an atmospheric degradation factor of Dir0 =
17, on average. We used a slow read-rate bare CCD detector and thus had to effectively deal with
additive noise in the speckle measurements. Our image reconstruction algorithms are based on the use of
the complex bispectrum and we have demonstrated diffraction-limited imaging down to light levels
approaching a few photons per speckle per resolution area. We have paid careful attention to the effects
of additive noise on the reconstruction process and shown that they can be adequately overcome.
Telescopes designed for non-conventional imaging of near-earth satellites must follow a unique set of design rules. Costs must be reduced substantially and the design must accommodate a technique to circumvent the atmospheric distortions of the image. Apertures to 12 meters and beyond are required along with alt-alt mounts providing high tracking rates. A novel design for such a telescope has been generated which is optimized for speckle imaging. Its mount closely resembles a radar mount and it does not employ the conventional dome. Costs for this design are projected to be considerably reduced compared to conventional designs. Results of a detailed design study will be presented. Applications to astronomy will be discussed.
Proceedings Volume Editor (1)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.