The X-ray Integral Field Unit (X-IFU) instrument to be on board the future ESA mission Athena X-ray Observatory is a cryogenic micro-calorimeter array of Transition Edge Sensor (TES) detectors aimed at providing spatially resolved high-resolution spectroscopy. As a part of the on-board Event Processor (EP), the reconstruction software will provide the energy, spatial location and arrival time of the incoming X-ray photons hitting the detector and inducing current pulses on it. Being the standard optimal filtering technique the chosen baseline reconstruction algorithm, a particular modification of this technique based on a truncation of the filter in the Time Domain (equivalent to 0-padding the pulse signal) was previously studied on simulated data, proving a better energy resolution results at a lower computational cost. However, the 0-padding technique also showed a larger sensitivity to instrumental conditions, making essential the analysis of its behaviour over real laboratory data. A comparative analysis of X-IFU-like TES laboratory data from NASA and NIST (at different instrumental conditions) with both the 0-padding filter and the standard optimal filters reconstruction shows that, once the corrections for the baseline drift and the jitter (phase introduced by the sampling rate) have been performed, the resolution values obtained using 0-padding are systematically lower than those of the standard filter of the same length and comparable or even lower to the values provided by the full-length filter. The shorter length of the 0-padding filter would be an additional benefit, reducing the computational cost of the reconstruction process.
The X-IFU instrument to be on board the X-ray Athena Observatory is a cryogenic microcalorimeter array of TES detectors aimed at providing spatially resolved high-resolution spectroscopy. The reconstruction software will provide energy, position and arrival time of the incoming X-ray photons that produce current pulses in the detector. Different modifications of the standard optimal filtering algorithm have been compared to process pulses shorter than those considered of high resolution (those where the full length is not available due to a close pulse after them) to select the best algorithm based on energy resolution and computing performance results. We can conclude that the best approach is that of the 0-padding filtering. However further checks about its sensibility to instrumental changes (baseline, bias voltage, etc.) are required.
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5’ equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ∼ 5” pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at ∼ 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 μm. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of ∼ 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (< 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018.
In the framework of the ESA Athena mission, the X-ray Integral Field Unit (X-IFU) micro-calorimeter will provide unprecedented spatially resolved high-resolution X-ray spectroscopy. For this purpose, the on-board Event Processor (EP) must initially trigger the current pulses induced by the X-ray photons hitting the detector to proceed with a reconstruction which provides the arrival time, spatial location and energy of each event. The current event triggering design is implemented in two stages: one initial trigger of the low-pass filtered derivative of the raw data to extract records containing pulses and a second stage performing a fine detection to look for all the pulses in the record. In order to establish the current baseline detection technique of the EP in the X-IFU instrument, an assessment of the capabilities of different triggering algorithms is required, both in terms of performance (detection efficiency) and computational load, as processing will take place on-board. We present a comparison of two detection algorithms, the Simplest Threshold Crossing (STC) and the model-dependent Adjusted Derivative (AD). The analysis also evaluates the (possible) negative effect of different instrumental scenarios as a reduced sampling rate. The evaluations point out that the simplest algorithm STC shows worse performance than AD for the smallest pulses separations and the lowest secondary energies. Nevertheless, checking the expected number of such pulses combinations in a typical bright source observation, we conclude that it does not have impact in the science. Moreover, the savings in the computational resources and calibration needs make STC a valuable option.
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with ~ 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we brie y describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution).
We present the design of tessim, a simulator for the physics of transition edge sensors developed in the framework of the Athena end to end simulation effort. Designed to represent the general behavior of transition edge sensors and to provide input for engineering and science studies for Athena, tessim implements a numerical solution of the linearized equations describing these devices. The simulation includes a model for the relevant noise sources and several implementations of possible trigger algorithms. Input and output of the software are standard FITS- files which can be visualized and processed using standard X-ray astronomical tool packages. Tessim is freely available as part of the SIXTE package (http://www.sternwarte.uni-erlangen.de/research/sixte/).
We present simulations of the detection probability for absorption lines from ions in the warm and hot ionized medium (WHIM) with Athena in the spectra of Gamma-ray burst afterglows. The simulations are based on Swift XRT lightcurves of these afterglows and are performed using the end-to-end simulation framework SIXTE. We simulate both the case of single and multiple absorption lines, as well as results for line searches in absorption structures from a more complex medium. We show that the Athena X-IFU can detect WHIM lines with strong Ovii lines (equivalent widths larger than 0.14 eV) in spectra containing 3 x 106 counts.
The X-ray Integral Field Unit (X-IFU) microcalorimeter, on-board Athena, with its focal plane comprising 3840 Transition Edge Sensors (TESs) operating at 90 mK, will provide unprecedented spectral-imaging capability in the 0.2-12 keV energy range. It will rely on the on-board digital processing of current pulses induced by the heat deposited in the TES absorber, as to recover the energy of each individual events. Assessing the capabilities of the pulse reconstruction is required to understand the overall scientific performance of the X-IFU, notably in terms of energy resolution degradation with both increasing energies and count rates. Using synthetic data streams generated by the X-IFU End-to-End simulator, we present here a comprehensive benchmark of various pulse reconstruction techniques, ranging from standard optimal filtering to more advanced algorithms based on noise covariance matrices. Beside deriving the spectral resolution achieved by the different algorithms, a first assessment of the computing power and ground calibration needs is presented. Overall, all methods show similar performances, with the reconstruction based on noise covariance matrices showing the best improvement with respect to the standard optimal filtering technique. Due to prohibitive calibration needs, this method might however not be applicable to the X-IFU and the best compromise currently appears to be the so-called resistance space analysis which also features very promising high count rate capabilities.
KEYWORDS: Electronics, Digital electronics, X-rays, Sensors, Data processing, Fused deposition modeling, Signal detection, Multiplexing, Spectral resolution, Digital signal processing
We are developing the digital readout electronics (DRE) of the X-Ray Integral Field Unit (X-IFU), one of the two Athena focal plane instruments. This subsystem is made of two main parts: the DRE-DEMUX and the DRE-EP. With a frequency domain multiplexing (FDM) the DRE-DEMUX makes the readout of the 3 840 Transition Edge Sensors (TES) in 96 channels of 40 pixels each. It provides the AC signals to voltage-bias the TES, it demodulates the detector's data which are readout by a SQUID and low noise amplifiers and it linearizes the detection chain to increase its dynamic range. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. a few μs) and with high frequency AC-bias (up to 5 MHz). This processing is partly analogue (anti aliasing and reconstruction filters) but mostly digital. The digital firmware is simultaneously applied to all the pixels in digital integrated circuits. After the demultiplexing the interface between the DRE-DEMUX and the DRE-EP has to cope with a data rate of 61.44 Gbps to transmit the data of the individual pixels. Then, the DRE-EP detects the events and computes their energy and grade according to their spectral quality: low resolution, medium resolution and high resolution (i.e. if two consecutive events are too close the estimate of the energy is less accurate). This processing is done in LEON based processor boards. At its output the DRE-EP provides the control unit of the instrument with a list including for each event its time of arrival, its energy, its location on the focal plane and its grade.
One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three
missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This
instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition
Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The
array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena.
In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.