We report the deposition and characterization of π΄ππ₯ππ¦ thin films to use them as pyroelectric detector. π΄ππ₯ππ¦ thin films were deposited using a direct current (DC) magnetron sputtering from an Al target with varying concentrations of Ar:N2 at constant pressure and substrate temperature. The film thickness' were varied between 100-200 nm with varying atomic composition based on Ar:N2 during deposition. The nitrogen content in the films varied from 39.0% to 44.7% as found by energy dispersive spectroscopy (EDS). Each of the thin films was annealed at a different temperature between 400 to 800 °C with 100 °C increment in N2 environment and X-ray diffraction (XRD) was performed to analyze the annealed films crystallinity. From the XRD data and by using Scherrer equation, we found that for samples annealed at 600 °C for fifteen minutes has the grain size of 12.28 nm. Optical properties of the films were measured with varying wavelengths which include transmission, reflection, absorption, refraction coefficient, extinction coefficient and the optical bandgap. We also determined the electrical properties of thin filmsβ which include the pyroelectric coefficient, pyroelectric current, dielectric constant, and film permittivity between the temperature range 270 K to 310 K. As the temperature is increased, the pyroelectric coefficient also increased almost linearly. The pyroelectric coefficient of annealed π΄ππ₯ππ¦ films found to be varied between 4.86 × 10-5 C/m2K to 1.32 × 10-4 C/m2K. The optical transmittance through the as grown non-annealed thin films was found to be varied between 35 to 78%, while the reflectance was found to be below 25%. Because of low absorption in the thin films the extinction coefficient was found to be near zero. The refractive index was varied between 1.7 and 2.2 for the π΄ππ₯ππ¦ thin films. The optical bandgap was found to be 1.40 eV for non-annealed π΄ππ₯ππ¦ thin film which was deposited on cover glass. The dielectric constant was varied between 30-1200000 depending on the annealing temperature of the film, while the film permittivity ranges between 0-1.25×10-5 F/m.
Pyroelectric detectors are the class of thermal detectors which change their spontaneous polarization when there is a change in temperature. The change in the spontaneous polarization occurs due to the absorption of infrared radiation which eventually produces a voltage. This work demonstrates the deposition and characterization of calcium modified lead titatante (Pb1-xCaxTiO3, PCT) thin films for using them as materials of pyroelectric thermal detectors. The PCT thin films were sputtered using an RF sputter system in Ar:O2 environment at room temperature. The thin films were grown on Au electrode. The capacitance was formed by using Au electrodes on top of PCT thin films which were fabricated by sputtering and liftoff. The PCT films were annealed at 450, 500, 550 and 600 °C in O2 environment for 15 minutes. Energy dispersive spectroscopy was done to determine the atomic composition of PCT films. Variations of capacitance, pyroelectric voltage, loss tangent and pyroelectric current between the temperature range 303 K to 353 K were determined. The PCT films were annealed at 550 °C showed the highest value of pyroelectric current and pyroelectric coefficient of 2.45 × 10-12 A and 1.99 μC/m2K respectively at room temperature. The loss tangent did not change much with temperature for all the PCT samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens usersβplease
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.