The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) has been developed for the third flight of the Sunrise balloon-borne stratospheric solar observatory. The aim of the SCIP is to reveal the evolution of three-dimensional magnetic fields in the solar photosphere and chromosphere using spectropolarimetric measurements with a polarimetric precision of 0.03% (1σ). Multiple lines in the 770 and 850 nm wavelength bands are simultaneously observed with two 2 k × 2 k CMOS cameras at a frame rate of 31.25 Hz. Stokes profiles are calculated onboard by accumulating the images modulated by a polarization modulation unit, and then compression processes are applied to the two-dimensional maps of the Stokes profiles. This onboard data processing effectively reduces the data rate. SCIP electronics can handle large data formats at high speed. Before the implementation into the flight SCIP electronics, a performance verification of the onboard data processing was performed with synthetic SCIP data that were produced with a numerical simulation modeling the solar atmospheres. Finally, we verified that the high-speed onboard data processing was realized on ground with the flight hardware using images illuminated by natural sunlight or an LED light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.