In food industry, detection of spoilage yeasts such as W. anomalus and B. bruxellensis and pathogens such as certain Listeria and E. coli species can be laborious and time-consuming. In the present study, a simple and repeatable technique was developed for rapid yeast detection using a combination of patterned gold coated polymer SERS substrates and gold nanoparticles [1−4]. For the first time, a state-of-the-art time-gated Raman detection approach was used as a complementary technique to show the possibility of using 532-nm pulsed laser excitation and avoid the destructive influence of induced fluorescence [3].
Conventional nanoparticles synthesized by colloidal chemistry are typically contaminated by non-biocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. Here, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and Au Si hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection [3].
We demonstrate successful identification of two types of bacteria (L. innocua and E. coli) and yeast (W. anomalus and B. bruxellensis). They showed several differing characteristic peaks making the discrimination of these yeasts possible without the need for chemometric analysis [2]. The use of composite gold-silicon laser-ablated nanoparticles in combination with the SERS substrate gave distinctive spectra for all the detected species. The detection limit of the studied species varied within 104-107 CFU/ml. The obtained results open up opportunities for non-disturbing investigation of biological systems by profiting from excellent non-disturbing nature of laser-synthesized nanomaterials in combination with outstanding optical detection technologies [2, 3].
[1] Uusitalo et al. 2016, http://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra08313g
[2] Uusitalo et al. 2017a, https://www.sciencedirect.com/science/article/pii/S0260877417302054
[3] Kögler et al. 2018, https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201700225
[4] Uusitalo et al. 2017b, https://www.spiedigitallibrary.org/journalArticle/Download?fullDOI=10.1117/1.OE.56.3.037102
Immunomagnetic separation (IMS) beads with antibody coating are an interesting option for biosensing applications for the identification of biomolecules and biological cells, such as bacteria. The paramagnetic properties of the beads can be utilized with optical sensing by migrating and accumulating the beads and the bound analytes toward the focus depth of the detection system by an external magnetic field. The stability of microbial detection with IMS beads was studied by combining a flexible, inexpensive, and mass producible surface-enhanced Raman spectroscopy (SERS) platform with gold nanoparticle detection and antibody recognition by the IMS beads. Listeria innocua ATCC 33090 was used as a model sample and the effect of the IMS beads on the detected Raman signal was studied. The IMS beads were deposited into a hydrophobic sample well and accumulated toward the detection plane by a neodymium magnet. For the first time, it was shown that the spatial stability of the detection could be improved up to 35% by using IMS bead capture and sample well placing. The effect of a neodymium magnet under the SERS chip improved the temporal detection and significantly reduced the necessary time for sample stabilization for advanced laboratory testing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.