We report the experimental measurement of the relationship between the size of particles being moved by optically patterned dielectrophoresis in an Optoelectronic Tweezers (OET) device and the force that they experience. The OET device turns an optical pattern into a pattern of electrical fields through the selective illumination of a photoconductive material. In this work we use a data projector to create the structured illumination which gives a relatively flat optical profile with steep optical gradients and hence steep electrical gradients at the edges of the light patterns created. For a small particle in a constant electrical gradient it would be expected that the force due to dielectrophoresis would scale with the cube of the particle’s radius whereas the forces needed to move it against the viscous fluid scale with the radius so that there would be a an increase of the velocity at which we can move particles with a relationship of the radius squared. As the particles in an OET device are often larger than the area over which the electrical gradients are produced it is not obvious how their forces scale with size. In this paper we show that there is a small size regime where the particle size relationship with force is well described by a linear fit and a regime where it is not. We show that the magnitude of the force is dependent on the light pattern used and that with larger particles and optimized light patterns velocities of around 1mms-1 can be achieved.
Optodielectrophoresis has been shown to be an interesting tool for massive manipulation of microparticles using external
electric fields. Here, no electrode fabrication is need it since they are created by the light distribution incident onto a
photoconducting material. We propose the use of this device for the recording of dynamic holograms in hydrogenated
amorphous silicon (a:Si-H)-liquid crystals hybrid devices. The device consists of 5CB liquid crystal sandwiched between
a photoconductive a:Si-H substrate and an ITO covered glass-plate. Diffraction efficiency of 3.3% is obtained when
holograms are recorded with a low power He-Ne laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.