An advanced infrared emitter, consisting of a non-periodic silicium-microstructure and a platinium-nano-composition, which enables extraordinary highly emission intensities is presented. A spectral broadband emission coefficient ε of nearly 1 is achieved. The foundation of the emitter is a MEMS hot plate design containing a high temperature stable molybdenum silicide resistance heater layer embedded in a multilayer membrane consisting of silicon nitride and silicon oxide. The temperature resistance of the silicon-platinum micro-nanostructure up to 800 °C is secured by a SiO2 protection layer. The long-term stability of the spectral behavior at 750 °C has been demonstrated over 10,000 h by FTIR measurements. The low thermal mass of the multilayer MEMS membrane leads to a time constant of 28 ms which enables high chopper frequencies. A precondition for long term stability under rough conditions is a real hermetic housing. High temperature stable packaging technologies for infrared MEMS components were developed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.