The response of a noisy FitzHugh-Nagumo (FHN) neuron-like model to
weak periodic forcing is analyzed. The mean activation time is
investigated as a function of noise intensity and of the parameters of the external signal. It is shown by numerical simulation that there exists a frequency range within which the phenomenon of resonant activation occurs; resonant activation is also observed in coupled FHN elements. The mean activation time with small noise intensity is compared with the theoretical results.
We investigate theoretically and numerically the activation process in a single-out and coupled FitzHugh-Nagumo elements. Two qualitatively different types of the dependence of the mean activation time and of the mean cycling time on the coupling strength monotonic and non-monotonic have been found for identical elements. The influence of coupling strength, noise intensity and firing threshold on the synchronization regimes and its characteristics is analyzed
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.