ZnO an interesting material platform provides broad applications in electronics and photonics. In this talk we will discuss the growth of vertically aligned and core-shell nano-structures. Some optical applications will be discussed.
A relatively high Mg mole fraction of 7% is achieved using the cavitation effect under sonication to overcome the low solubility of ZnO-MgO at low temperature. The Mg mole fraction is confirmed by shift in the near band emission of free exciton under photoluminescence spectroscopy at room temperature. The x-ray diffraction pattern has a large peak associated to ZnO (002) from which the c-lattice constant is calculated to be 5.1967Ǻ. The nanorods (NRs) grown via sonochemical are compared to nanowires (NWs) grown using metal organic chemical vapor deposition (MOCVD) and hydrothermal synthesis. Also, the effect of the ZnO film used as seed layer is described and compare to a simple spin coated layer. Terahertz (THz) index of refraction and dielectric constant of wurtzite Zn1-xMgxO NWs with Mg mole fraction of 7% via sonochemical are determined using THz time domain spectroscopy (THz-TDS). The results are compared with ZnO and ZnMgO NWs with 10% Mg mole fraction grown using MOCVD. The successful growth of Zn1-xMgxO with wurtzite structure at low temperature permits realization of the growth of heterostructures, quantum well, nanowires and nanorods on flexible substrates providing lower cost, optical and carrier confinement necessary in advanced light emitting diodes (LEDs), laser diodes (LDs) and high efficiency solar cells.
Zinc oxide (ZnO) is a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties that has a diverse group of growth morphologies. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the ultraviolet (UV) spectral band. Highly ordered vertical arrays of ZnO nanowires (NWs) have been grown on substrates including silicon, SiO2, GaN, and sapphire using a metal organic chemical vapor deposition (MOCVD) growth process. The structural and optical properties of the grown vertically aligned ZnO NW arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. Compared to conventional UV sensors, detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity, and are expected to exhibit low noise, high quantum efficiency, extended lifetimes, and have low power requirements. The photoresponse switching properties of NW array based sensing devices have been measured with intermittent exposure to UV radiation, where the devices were found to switch between low and high conductivity states at time intervals on the order of a few seconds. Envisioned applications for such sensors/FPAs potentially include threat detection and threat warning.
Zinc oxide (ZnO) is a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties that has a diverse group of growth morphologies. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the ultraviolet (UV) spectral band. Highly ordered vertical arrays of ZnO nanowires (NWs) have been grown on substrates including silicon, SiO2, GaN, and sapphire using a metal organic chemical vapor deposition (MOCVD) growth process. The structural and optical properties of the grown vertically aligned ZnO NW arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. Compared to conventional UV sensors, detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity, and are expected to exhibit low noise, high quantum efficiency, extended lifetimes, and have low power requirements. The photoresponse switching properties of NW array based sensing devices have been measured with intermittent exposure to UV radiation, where the devices were found to switch between low and high conductivity states at time intervals on the order of a few seconds. Furthermore, NW based UV sensors and focal plane arrays (FPAs) show promise for imaging in the near marine boundary layer, an area extending up to about six meters above the ocean surface characterized by a relatively high degree of aerosols and turbulence. Envisioned applications for such sensors/FPAs potentially integrated into submarine photonic masts (which would maintain their effectiveness even in bright daylight conditions) include threat detection and threat warning.
Zinc oxide (ZnO) is a biocompatible and versatile functional material having a bandgap of 3.37 eV that exhibits both semiconducting and piezoelectric properties and has a diverse group of growth morphologies. We have grown highly ordered vertical arrays of ZnO nanowires (NWs) using a metal organic chemical vapor deposition (MOCVD) growth process on various substrates. The NWs were grown on p-Si (100), SiO2, and m-plane sapphire substrates. The structural and optical properties of the grown vertically aligned ZnO NW arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. The unique diffraction pattern for ZnO (002) concurred with the SEM inspection indicating vertical orientation of the NWs. UV detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity for applications such as missile plume detection and threat warning. Compared to the photomultiplier tubes (PMTs) prevalent in current missile warning systems, the NW detector arrays are expected to exhibit low noise, extended lifetimes, and low power requirements for UV detector applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.