We report on the demonstration of a bidirectional free-space link over 18 km as part of the European-Union project “VERTIGO” that investigates technologies for the optical GEO-satellite feeder link. Two different terminals were deployed: a single-aperture “satellite” terminal and a 4-aperture “ground” terminal. Using SFP+ transceivers with OOK modulation at 10 Gbit/s, real-time bit error rates (BER) were measured for each aperture in both directions using an FPGA platform. In both directions, diversity signals at the receiver were processed digitally for combining. We report on the achieved performance improvement compared to a single aperture.
To concurrently cope with the scarcity of RF frequency bands, the growing capacity demand and the required lower cost of the ground segment, Very High Throughput Satellites systems must rely on new technical solutions. Optical feeder links are considered as a promising alternative to surpass classical RF technology, offering assets inherent to optical technologies (large bandwidth, no frequency regulation, low beam divergence, components availability). Nevertheless the potential of this technology shall not conceal the remaining challenges to be overcome to make it relevant for operational missions : clouds, turbulence, power generation and high efficiency modulations. VERTIGO (Very High Throughput Satellite Ground Optical Link) is a 3-year H2020 project funded by the European commission and started mid-2019 focusing on the optical link itself regardless of site diversity aspect and aiming at demonstrating in a ground demonstration required technologies to implement very high capacity optical feeder links. In particular, VERTIGO is built on 3 pillars each addressing a key issue for the implementation of optical feerder links: 1) Throughput increase through the use of advanced schemes with high spectral and power efficiency compared to current modulations used in space, as well as RF-over-Fiber approach. 2) High optical power generation to close the demanding link budgets by developing on-board and ground means to raise the transmitted optical power, not only based on amplifier power increase, but also on incoherent/coherent power combining. 3) Opto-mechanical and digital techniques for the mitigation of atmospheric propagation impairments, to make full use of throughput and power increases. Several demonstrations in-flight or on-ground already demonstrated separately key aspects (atmospheric propagation and impairments mitigation techniques, modulation format, high power…), for the implementation of optical (feeder) links. These aspects are closely linked since the solutions to each of them are necessary but not sufficient to allow for high throughput transmissions. VERTIGO concept is to address each key issue with at least one solution and to combine them in an unprecedented manner. To reach these objectives, VERTIGO will lean on a highly skilled consortium composed of : CREONIC, ETH Zürich, Fraunhofer HHI, Gooch and Housego, Leo Space Photonics RD, ONERA, Thales Research and Technology, Thales Alenia Space in France and Switzerland. This paper will present the VERTIGO project and its status.
Maskless lithography based on electron beam parallelization requires well adapted data links, capable of transmitting the corresponding data volume at rates up to the Tbps domain. In this paper we focus on two key components, the high-speed data buffer unit and the integrated optical receiver, which are part of a scalable (24 - 140 Gbps) optical data link. The high-speed buffer design architecture enables the transmission of skew-compensated parallel data in the range of 50 Gbps. The 45-channel low-noise integrated optical receiver chip based on BiCMOS 0.6 micron technology is capable of an overall transmission capacity of 140 Gbps.
Maskless lithography based on electron beam parallelization requires well adapted data links, capable of transmitting the corresponding data volume at rates up to the Tbps domain. In this paper we focus on a scalable (24 - 140 Gbps) optical data link, well adapted for future implementation in maskless lithography systems. The link comprises a high-speed data buffer with synchronizable architecture and scalable throughput (N x 24 Gbps), an optical free space transmission solution, a 45 channel low-noise optical receiver chip based on BiCMOS 0.6 micron technology and, finally, a Data Processor & Demux IP core implemented in VHDL.
With the willingness of the semiconductor industry to push manufacturing costs down, the mask
less lithography solution represents a promising option to deal with the cost and complexity concerns
about the optical lithography solution. Though a real interest, the development of multi beam tools still
remains in laboratory environment. In the frame of the seventh European Framework Program (FP7), a
new project, MAGIC, started January 1st 2008 with the objective to strengthen the development of the
mask less technology. The aim of the program is to develop multi beam systems from MAPPER and
IMS nanofabrication technologies and the associated infrastructure for the future tool usage. This paper
draws the present status of multi beam lithography and details the content and the objectives of the
MAGIC project.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.