In this research rhodium nanoparticles (RhNPs) were synthesized and used for studying the fluorescence of aromatic amino acids (tryptophan (Trp) and tyrosine (Tyr)). Stern-Volmer plots were constructed and the corresponding quenching constants were calculated. It was determined that with increasing concentration of RhNPs, the fluorescence intensity of aromatic amino acids decreases as a result of different types of quenching.
The paper describes the results of Raman spectroscopy and SERS for the study of fluorescent components of Baltic amber via the extraction method. Using SERS, it was possible to confirm in amber: tetracene and benzanthracene and others components. It has been shown that SERS methods are effective for the detection of aromatic and non-aromatic compounds. SERS be used to distinguish between different types of amber and isolate the necessary amber components. The obtained results are promising for compiling spectral maps of ambers for their possible classification by their place of origin and age.
This study demonstrates the possibility of using the SERS method to detect methotrexate (MTX) molecules in the blood plasma of patients in concentrations up to 10-6 M. The paper performs investigation for samples from patients who took the drug at different doses. Borosilicate glasses coated with silver nanoparticles were used as the surface. We analyzed the differences between the spectra of patients after taking medication and healthy volunteers without taking medication. The characteristic maxima of methotrexate were determined.
This study demonstrates the possibility of the surface enhanced Raman spectroscopy (SERS) method to determine concentrations of methotrexate (MTX) in human plasma. This method makes it possible to detect low concentrations of methotrexate in biological samples with relatively inexpensive portable equipment. The SERS signal may be greatly enhanced using nanostructured plasmonic materials which will make this method highly sensitive, selective and productive. The use of SERS to perform a therapeutic drug monitoring procedure is a promising method because of its extreme sensitivity, specificity and speed of analysis.
Thrombus formation issues play an important role in the occurrence, diagnosis and treatment of cardiovascular diseases. The inhibition of platelet aggregation is currently the main therapeutic approach in treatment and prevention of cardiovascular diseases. Understanding the platelet structure and its spectral response to the antiplatelet therapy is the key to personalized medicine today. According to the World Health Organization (WHO) reports, cardiovascular deceases have been remaining the leading cause of death at the global level for the last two decades. The number of deaths has been increased up to nearly 9 million in 2019 [1]. The COVID-19 pandemic has resulted in cardiovascular decease (CVD) increase, which caused deaths in many countries [2-3]. The paper presents studies of the fluorescence intensity of aromatic amino acids namely tyrosine (Tyr) and tryptophan (Trp) in the presence of spherical rhodium and platinum nanoparticles (Rh and Pt NPs).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.