As the reach of quantum technologies extends ever further in communication and information science, a reliable way of transferring quantum information between distant locations becomes ever more crucial. While photons are widely accepted as excellent carriers due to their speed and low decoherence, losses of transmission (in free space or fibre) and the impossibility of cloning quantum information still pose a great challenge. The quantum repeater architecture was suggested as a solution to both problems [1]. In a quantum repeater the information encoded in an input state is transferred to a new one through entanglement swapping, that is then sent on along the channel.
In this work we present our advances towards the realisation of a quantum repeater. Our system of choice combines a solid-state quantum memory with a source of photon pairs. The memory is based on a Rare-Earth Doped crystal, where quantum information can be stored in Pr3+ ions as a collective excitation using the Atomic Frequency Comb technique. On demand retrieval of the information is realised by transferring the excitation to a long-lived spin state. Record values of storage times and retrieval efficiencies have been demonstrated in this system [2]. Entangled pairs of single photons are generated by parametric down conversion in a periodically poled crystal placed inside a bow-tie cavity. This allows us to generate narrow band photons pairs, where the signal is spectrally matched to the memory (606nm), while the idler is in the telecom band [3]. Such a configuration allows us to benefit from the high performance of the memory, that also allows for temporal [2] and frequency [4] multimodality, while at the same time overcoming the high optical losses of 606nm photons by pair generation of a telecom photon.
The first stepping stone, progress towards which is presented in this work, is the successful demonstration of energy-time entanglement between the telecom idler photon and the signal photon, stored as spin-wave excitation. The entanglement of the original pair is maintained by the memory temporal multimodality. The entanglement analysis will be made through time-bin qubit analysers made of a fibre-based Mach-Zehnder interferometer, for the former, and a solid-state equivalent based on two AFC with different storage times, for the latter [5]. In this direction we have already doubled the efficiency of the AFC storage protocols, that will be beneficial to count rates and signal-to-noise ratio. With respect to [2], we also increased the spectral-matching between the source and the memory [4]. Our experiment will provide an increase in storage time of 3 orders of magnitude with respect to previous demonstrations, as well as introducing for the first time on-demand read-out in a highly multi-mode memory. Demonstration of the successful transfer of quantum information between the signal photon and the long-lived solid-state excitation will open the way to the demonstration of long-distance entanglement between individual nodes in a quantum network.
Efficient and long-lived multimode quantum memories are crucial devices in the development of quantum technolgies. The reversible mapping of quantum states of light in rare earth doped crystals represents one of the most promising routes towards the realization of this goal. Such systems are also compatible with the miniaturization of quantum memories in integrated optics platforms, which offer unique features in terms of experimental scalability and enhanced light-matter interaction. Here, we fabricate single mode channel waveguides for 606 nm light in a praseodymium-doped yttrium orthosilicate crystal (Pr3+:Y2SiO5), that, thanks to its excellent coherence properties, is a widely studied material for light storage experiments. Waveguides are inscribed by femtosecond laser writing, adopting the so-called Type I configuration, where the core is directly obtained at the irradiated area. Remarkably, fabricating this kind of waveguides in crystals is a difficult task, as it requires to operate in a very narrow processing parameters window, if existing. We then use these waveguides for performing the storage and retrieval of single photons, implementing the atomic frequency comb protocol. We achieve a storage time of 5,5 µs, which is almost 2 orders of magnitude longer than previous realizations of quantum light storage in a waveguide. In addition, we investigate the potential information multiplexing capabilities of our system by performing the quantum storage of single photons delocalized over 14 different spectral modes. Our results show that laser written waveguides in rare earth-doped solid state systems are very promising for the development of efficient and long-lived multimode quantum memories.
The reversible mapping of quantum states of light in cryogenically cooled rare earth doped crystals, represents one of the most promising routes towards the realization of efficient and high fidelity quantum memories. The miniaturization of these devices in robust and monolithic integrated-optics platforms would be beneficial both in terms of experimental scalability and of enhanced light-matter interaction, arising from the waveguide field confinement.
Here, for the first time, we fabricate single mode channel waveguides for visible light at 606 nm in a Praseodymium-doped Yttrium Orthosilicate crystal, which is one of the most employed materials for light storage experiments, thanks to its excellent coherence properties. For the waveguide fabrication, we use the direct technique called femtosecond laser micromachining, in which a femtosecond laser beam is focused inside the crystal volume, and produces a permanent and very localized material modification. In particular, we fabricate the waveguide cladding by inscribing a pair of parallel damage tracks which confine light in the in-between region. With this approach, the waveguide core is not directly exposed to the laser irradiation and consequently its bulk properties result only marginally affected. Measurements of the optical coherence time in waveguide gave results comparable to those obtained in a bulk sample and this confirms that the fabrication procedure does not affect the coherence of the active ions. We performed the storage and the on-demand recall of bright coherent pulses in waveguide, using the atomic frequency comb (AFC) protocol extended to the ground state.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.