KEYWORDS: Observatories, Telescopes, Artificial intelligence, Systems modeling, Data modeling, Astronomy, Control systems, Databases, Advanced process control, Automatic control, Automation, Facility engineering, Data transmission
The Observatorio Astrofísico de Javalambre (OAJ†1 ) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view: the JST/T250, a 2.55 m telescope of 3 deg field of view, and the JAST/T80, an 83 cm telescope of 2 deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousand square degrees, J-PAS†2 and J-PLUS†3 , each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras deployed within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. The first part of this paper elaborates on the organizational advantages realized through the incorporation of Enterprise Resource Planning (ERP) and Computerized Maintenance Management System (CMMS) in our operations. These administrative tools offer a coherent framework for workforce optimization, reducing operational costs, and achieving scientific objectives while maintaining stringent quality standards. Central to this strategy is the employment of a common inventory structure to facilitate seamless interdepartmental processes. The second section explores how emerging technologies, specifically Artificial Intelligence (AI), are integral in achieving a harmonized global framework. AI models and algorithms are instrumental in optimizing various facets of the observatory's operations, thereby furnishing the project with essential high-quality tools for success. This multi-faceted approach not only meets but exceeds operational and scientific targets within budgetary constraints, setting a benchmark for observatory operational efficiency and performance.
KEYWORDS: Observatories, Control systems, Telescopes, Astronomy, Buildings, Control systems design, Systems modeling, Telecommunications, System integration, Optical filters
The Observatorio Astrofísico de Javalambre (OAJ†1 ) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view (FoV): the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousands square degrees, J-PAS†2 and J-PLUS†3 , each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras under development within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. This paper describes in detail, from operations point of view, a comparison between the detailed cost of the global automation of the Observatory and the standard automation cost for astronomical facilities, in reference to the total investment and highlighting all benefits obtained from this approach and difficulties encountered. The paper also describes the engineering development of the overall facilities and infrastructures for the fully automated observatory and a global overview of current status, pinpointing lessons learned in order to boost observatory operations performance, achieving scientific targets, maintaining quality requirements, but also minimizing operation cost and human resources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.