Chemical threat detection has long been of interest to military, law enforcement, environmental agencies, and forensic investigators. Recently, as the propensity for both foreign and homegrown terrorism, illegal drug manufacture, and concern for environmental regulation continues to grow, the demand for rapid, portable chemical threat detection capabilities has increased dramatically. In particular, the ability to identify chemical threats (explosives, narcotics, toxic industrial chemicals, etc.) at a distance (standoff) is of special interest as it increases the safety of the end user during interrogation. Traditional analytical laboratory techniques such as high-performance liquid chromatography or gas chromatography coupled with mass spectrometry offer excellent sensitivity for detection and identification of trace amounts of threatening material. However, these techniques often lack the portability necessary for remote on-site interrogation as samples must be physically collected and brought to a laboratory for analysis. Vibrational spectroscopic techniques offer both the chemical identification and miniaturization capabilities required for portable, on-site chemical threat detection. Most importantly, spectroscopic techniques are inherently and uniquely standoff, where emitted or scattered photons are collected at some distance from the sample. The challenge then becomes miniaturizing the instrumentation while maximizing the distance at which accurate chemical detection can be made. Here we report on portable chemical threat detection instrumentation developed by Alakai Defense Systems, which employs deep ultra-violet Raman spectroscopy. We discuss the general system aspects such as basic optical design and ambient light rejection techniques. We also present data on the performance capabilities using several substances including actual narcotics and other compounds commonly used as cutting agents. Lastly, we discuss possible future directions including the ability for rapid spectroscopy while maintaining high photon detection sensitivity by employing an intensified scientific CMOS (sCMOS) and the propensity for NIR standoff Raman detection using deep-depletion CCD technology.
Alakai Defense Systems has created two new short range UV Raman standoff explosive detection sensors. These are called the Critical Infrastructure Protection System (CIPS) and Portable Raman Improvised Explosive Detection System (PRIED) and work at standoff ranges of 10cm and 1-10m respectively. Both these systems are designed to detect neartrace quantities of explosives and Homemade Explosives. A short description of the instruments, design trades, and CONOPS of each design is presented. Data includes a wide variety of explosives, precursors, TIC/TIM’s, narcotics, and CWA simulants
Alakai Defense Systems has created a standoff explosive detection sensor called the Check Point Explosives Detection
System for use at military check points. The system is designed to find trace level explosive residues from a standoff
distance to thwart the transport and use of illegal homemade explosives, precursors and related contraband. Because of
its standoff nature, this instrument could offer benefits to those searching for explosives, since it removes the searcher
from harm's way if a detonation occurs. A short description of the instrument, improvements to the system over the past
year, and a brief overview of recent testing are presented here.
We have built and tested a laser induced desorption (LID), electron impact ionization, time-of-flight (TOF) mass spectrometer (MS) designed to nondestructively identify and measure adsorbed contaminants on critical surfaces for the microelectronics and optics industries. The LID-TOFMS combines the capability of a TOF mass spectrometer to measure all the desorbed molecules from a single laser shot with an infrared Er:YAG laser (2.94 micron), which is not strongly absorbed by many transparent optical materials but is strongly absorbed by water, the most common adsorbed surface contaminant, to yield surface composition as a function of position on the sample. The LID-TOFMS was calibrated using an oxalic acid film on a polished stainless steel plate, which also contained adsorbed water. Contaminants on CaF2 surfaces measured by LID-TOFMS include water and hydrocarbons. Desorbed molecules decrease with increasing irradiations at a fixed laser fluence, suggesting that the surface is being cleaned.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.