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ABSTRACT

In sparse X-ray Computed Tomography, the radiation dose to the patient is lowered by measuring fewer projection
views compared to a standard protocol. In this work we investigate a hybrid approach combining shearlet
representation with deep learning for reconstruction of sparse-view X-ray computed tomography. The proposed
method is hybrid in that it reconstructs the parts that can provably be retrieved by utilizing a model-based
approach, and it in-paints the parts that provably cannot through a learning-based approach. In doing so, we
attempt to benefit from the best aspects of model- and learning-based methods. We demonstrate first promising
results on publicly available data.
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1. INTRODUCTION

X-Ray Computed Tomography (CT) is an essential technique that provides deep insight of a patient or an object
of interest in a non-invasive manner. The forward model can be formulated as

Rf=y+n (1)

where R represents the X-ray transform, f the quantity to be reconstructed (the absorption coefficients),
while y represents the X-ray measurements and 7 some noise.

An important aspect of medical X-ray CT is the radiation exposure of the patients. One technique to lower
the radiation dose is by lowering the number of projection views.! This is referred to as sparse-view or sparse
X-Ray CT. The reconstructions of such sparse measurements tend to feature streak artifacts near edges tangent
to the acquired X-rays.! With increasing sparsity, and thus with an increasing lack of measurement data, the
severity of these streak artifacts increases as well. Hence a reconstruction approach alleviating the impact of
these streak artifacts is highly desirable.

The visibility principle? tells us in essence that the visible part of an object is comprised of the set of edges
tangent to the acquired X-rays, and the invisible part is comprised of the edges non-tangent to these X-rays.
Moreover, which edges can or cannot be reconstructed is dependent on the acquisition geometry, therefore known
before acquisition.

Following® we leverage this principle by employing shearlets to resolve the wavefront set of such a signal.
This enables us to properly reconstruct the visible edges using ¢;-regularization and to in-paint the invisible
ones using deep learning. Using only model-based methods, by the visibility principle, we cannot retrieve the
invisible information. On the other hand, using only deep learning on such an ill-posed problem, we might get
satisfactory results up to a point, but we will not be able to certainly assert as to how much the original signal
has changed.?

Therefore, our proposed approach, which we will term SDLX for the remainder of this work, is a hybrid
method that benefits from the best aspects of both model-based and learning-based approaches for sparse-view
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X-ray CT reconstruction. The SDLX method is very closely related to,? which was developed for limited-angle
X-ray CT. In the following we will present the SDLX method in detail, along with first results on a publicly
available data set.

2. METHODS
2.1 SHEARLETS

Shearlets are a mathematical concept building on top of existing wavelet-theory components with distinct advan-
tages. They represent a multi-scale framework that provides optimally sparse approximations of multivariate,
anisotropic data. The approximation rate of shearlets is of O(N~2), comparatively better than the O(N 1) of
wavelets. Shearlets are constructed by applying three operations, translation, dilation, and shearing, see* for
details. They are applied to a single generating function 1, resulting in a shearlet system

¢a,s,t == ‘ det Mas‘l/l(/}Mas(*t) (2)

Here, a € R, dictates the dilation matrix A,, s € R dictates the shearing matrix S,, while ¢t € R? represents
the translations. The composite matrix M, is then defined as M,s = A,;1S;!. The continuous shearlet
transform is then

SH(f) = (f:Yast) (3)

For the discerete shearlet transform, we sample the parameter space R,y x R x R? at discrete points.
This defines the regular discrete shearlet system as

SH(qu)) = {¢j,k,m23j/4w(SkA21)av(.jv ka m) €Z XL x Z2} (4)

The discrete shearlet transform is defined similarly to the continuous scenario.

Given the directional bias exhibited by regular shearlets,” we will instead be using the cone-adapted shearlets
as they provide a remedy to it. For a visual representation of the tiling that is generated in the Fourier domain,
see Figure 1. Additionally, we want to explicitly specify and emphasize, that the cone-adapted discrete
shearlet systems as mentioned above, under mild assumptions, form a Parseval frame.® Based on this fact
and the above statements, we know that

f=SHT(SH(f)) ()

This equation represents a powerful reconstruction formula of the discrete shearlet transform, which is
essential to our hybrid approach.

By far the most important property of the shearlet systems to the hybrid approach is their ability to resolve
the wavefront set of the signals at hand.? This allows us to differentiate the visible and invisible boundaries, and
is accomplished by distinguishing different decay rates of the shearlet transform.

It is worth pointing out that we utilize classical shearlet systems, which are band-limited (compact support
in the frequency domain?). Our implementation of such a discrete cone-adapted band-limited shearlet
transform is based on,” to which we refer the reader to for further details. We also utilize the shearlet
transform available in® as an intermediary operation after running the ¢;-regularization.
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Figure 1: Frequency tiling of the cone-adapted shearlet system. By Afg genzel - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=27761187

2.2 SPARSE REGULARIZATION WITH ADMM

Sparse regularization attempts to leverage the assumption that the output of a problem can be described by a
fewer number of inputs, or put differently that for every output there exists a sparsifying representation system.?
More specifically for low-dose CT, it has been shown that such methods enable more accurate reconstructions
given very few tomographic measurements.® Therefore, such a paradigm is of interest to us for tackling sparse-
view X-ray CT.

Alternating Direction Method of Multipliers (ADMM) is a general algorithm that works quite well
in splitting the minimization of the sparsity-promoting ¢;-regularization term and the data fidelity term. Details
on ADMM can be found in.’

Based on (1), we are now able to construct and utilize shearlet-based sparse regularization. Explicitly
expressing the reconstruction problem built so far, we write

. 1
argmingso 5| Bf +yll + [SH(f)l1w (6)
in which w € R‘;VOXH *L represents the weights to the regularization term. This allows us to split the wavefront
set of the signal into the visible and invisible parts, as described in the visibility principle. In this equation we
have also explicitly specified a constraint for non-negative solutions, as it leads to better reconstructions.?

We solve this minimization problem using ADMM.
2.3 RECOVERING THE INVISIBLE USING DEEP LEARNING

Deep Learning is one of the most influential paradigms of the last few decades with impressive results in a
plethora of fields. In the recent years, considerable attempts have also been made towards the field of medical
imaging as well. Many of the current model architectures and techniques pre-process the measurements or post-
process the reconstructions, which can produce impressive results. However, it is not always immediately obvious
if data fidelity has been preserved. In a medical setting this is not something that can be brushed aside easily,
as accuracy is crucial.

In the hybrid approach that we are working on, the influence of deep learning is kept to a minimum. It is
only used for in-painting missing information that can provably not be retrieved through classical model-based
approaches. The architecture that we are using is PhantomNet, as proposed in.3
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PhantomNet is a fully-convolutional neural network based on one of the most prevalent architectures, U-
Net. Different from U-Net, it is also a multi-channel input and multi-channel output network, based on the
fact that it operates on the phase space and works with shearlet coefficients. More specifically, it takes a signal
of shape (L,W, H) (e.g. (61,512,512) and outputs a signal of the same shape. Here, W and H respectively
represent the width and height of the image, while L dictates the number of layers of the shearlet coefficients.
We refer the reader to® for full details on the architecture.

2.4 THE SDLX METHOD

Using the separate components of the hybrid approach outlined above, we now summarize all the steps that
make up the SDLX method.

1. Retrieve the visible coefficients
Compute ¢1-regularized solutions of the following problem

. 1
g € argmin>q iHRf+ZUH + ISH(f)l1,w (7)

by utilizing ADMM (or any other appropriate solver), which retrieves the visible coefficients based on the
provided measurements. The input to this step are the sparse-view measurements y, while the output g is
a reconstruction with sparse-view artifacts.

2. Estimate the invisible coefficients
We apply the shearlet transform to all of the images g generated above, which maps them from (W, H)
to (L, W, H). The PhantomNet uses these shearlet coefficients as input, and it outputs objects of the
same shape, which are the in-painted shearlet coefficients. After training PhantomNet (PIN), we use this
model to estimate the invisible coefficients. If its weights are well adjusted, the following approximation
should hold to a satisfactory threshold,

PN(SH(g)) = SH(f)inv (8)

3. Combine the visible and invisible coefficients
Up until here we have the retrieved visible coefficients and a decent-enough estimation of the invisible
coefficients (output of PN). We sum them together and bring the entire output back to the spatial-domain
through the inverse shearlet transform

fsprx = SH"(SH(g)vis + PN(SH(g))) (9)

Here, fsprx is our end-result (of shape (W, H)), which contains the reconstruction of the sparse-view
measurements along with the in-painting of the missing information.

The run-time of the proposed SDLX method is dominated by ADMM solving the ¢;-regularized problem.
The implementations of our proposed algorithm are available at.'% 1!

3. EXPERIMENTS AND RESULTS

The dataset used here is the one provided by the Mayo Clinic for the AAPM Low-Dose CT Grand Challenge.'? It
contains human abdomen scans with width and height of 512. We chose the low-dose scans, with pixel intensities
in [0 : 255].

For training of the PhantomNet we selected 10 patients, with the IDs of L004, L006, L014, L019, L033,
L049, L056, L057, L058, and L064, which comprised a total number of 1525 scans. For testing we chose another
patient, with an ID of LO71.

To generate training pairs for the PhantomNet, we first simulate sparse, 64 projection view sinograms
(over an arc of 360 degrees) of the 1525 training images using,!! adding 1% Gaussian noise. Then we compute
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Table 1: Metrics of the 64-view reconstruction results on patient LO71 compared to the ground truth. The lower
the RE, the better. The higher the PSNR, SSIM, HaarPSI, the better.

Metrics
Method | RE PSNR || SSIM || HaarPSI
feca 0.073 | 21.664 | 0.221 0.339
fapmam || 0.061 || 22.409 | 0.246 0.352
fsprx || 0.026 || 26.001 || 0.271 | 0.626

¢1-regularized reconstructions of those sinograms using ADMM as in (7), with 10 iterations of ADMM and 5
inner iterations of the conjugate gradient method on the normal equation. We manually selected the parameters
of ADMM as p; = 1/2, po = 1 (as in®), and w = 0.001. Afterwards, we apply the forward shearlet transform
from.®

We train the PhantomNet for 100 epochs in single-batches (e.g. one (61,512,512) object as a batch) on a
learning rate of 7e — 5 and weight decay of 1le — 7. The chosen optimizer is Adam. The loss function is the mean
squared error loss from torch.nn.MSELoss.

For testing, we use the data from the patient with ID of L071, and simulate sparse-view sinograms with 64
projection views as above, adding 1% Gaussian noise. We execute the full SDLX method as in subsection 2.4,
using the same ADMM parameters as for training the net. In the last step, we sum together the visible coefficients
from the ¢;-regularization and the estimated invisible coefficients that the trained PhantomNet predicts, and
apply the inverse shearlet transform to it.

An example result fsprx of our proposed SDLX method is shown in Figure 2 for one of the slices of patient
ID LO71, which was not seen during training. We also compare with the ground truth and reconstructions using
the same ADMM as in the first step of SDLX, fapara, and the result of an unregularized CG reconstruction
using 10 iterations, fog.

It is apparent that this hybrid method is capable of in-painting the missing singularities for sparse-view CT.
SDLX outperforms the other methods, a claim also supported by the metrics, as displayed in Table 1. The
metrics utilized are the Relative Error (RE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Haar Wavelet-Based Perceptual Similarity Index (HaarPSI).

We also ran the same testing experiment without adding noise to the simulated sinograms. The trained
model (on noisy simulated data) performed just as well on the unseen data, which serves as an indicator that
SDLX is fairly robust towards noise.

4. DISCUSSION AND CONCLUSION

The results from the experiment indicate that the hybrid approach works for sparse-view CT. However, a certain
smoothing effect is also visible in the results. First experiments (not shown here) indicate that further tuning of
the training of PhantomNet might negate this effect.

One aspect of the SDLX method that might introduce unexplained features is the deep learning step. Fortu-
nately, this element is utilized here in a relatively controlled manner, given that it only handles the inference of
the invisible coefficients. Further tuning of the hyper-parameters might be beneficial, as might be the study of
more advanced models, such as transformers, instead of the U-net.

In summary, SDLX works because shearlets are capable of resolving the wavefront sets of the signals we are
dealing with, and these decomposed coeflicients adhere to certain rules which we can then learn. Adapting the
work for limited-angle X-ray CT in,? our first experiments for sparse-view X-ray CT on a publicly available data
set show promising results.
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(¢) fsprx (d) fapmm
Figure 2: 64-view reconstruction results on patient LO71. The ground truth is f, while fsprx is the output of
our proposed SDLX algorithm. For comparison, we also show the reconstruction of the first step of the SDLX
algorithm (faparar) as well as an unregularized iterative CG reconstruction fog. The pixel intensities lie in
[0: 255]. For further details see section 3.
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