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ABSTRACT

The desire for noninvasive monitoring of thermal therapy is readily apparent
given its intent to be a minimally -invasive form of treatment. Electromagnetic properties
of tissue vary with temperature; hence, the opportunity exists to exploit these variations
as a means of following thermally -based therapeutic interventions. The review describes
progress in electrical impedance tomography and active microwave imaging towards the
realization of noninvasive temperature estimation. Examples are drawn from the author's
experiences with these technologies in order to illustrate the principles and practices
associated with electromagnetic imaging in the therapy monitoring context.
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1. INTRODUCTION

Electromagnetic methods have been used extensively to deliver thermal therapy
as described throughout this review volume. Developments have included a variety of
source configurations and frequency bands with therapeutic goals ranging from the
induction of mild hyperthermia (elevations a few degrees above core body temperature)
to the thermal ablation of the target zone (elevations above the temperature of blood
coagulation). Far less developed is the idea of using electromagnetic methods to monitor
and assess thermal therapy through noninvasive sensing. The genesis for considering
whether electromagnetic technology can serve in this role is the observation that the
electromagnetic properties of most tissues are temperature dependent1-3. Hence, if one
could devise a scheme for imaging electromagnetic property changes noninvasively, it
might be possible to track the evolution of temperature rise in tissue during the course of
thermal therapy. This chapter will review efforts to use electromagnetic methods for
therapy monitoring and assessment.

Specifically, active technologies will be investigated. For the purposes of this
chapter active will imply that the electromagnetic methods under review deploy a probing
signal over particular bands of the frequency spectrum in order to excite a tissue response
which is used to infer the spatial distribution of the electrical properties within the tissue
volume of interest. This is in contrast to passive strategies which infer temperature data
based on the natural electromagnetic emissions that emanate from thermally stimulated
tissue. These radiometric methods, typically applied over the microwave' and infrared'-
s spectrums, have been used successfully in a variety of settings including some which
are related to thermal therapy9-1. However, radiometric methods are often confined to
the first few centimeters of tissue and largely amount to one -dimensional depth profiling
because of their poor lateral resolution which is limited by the aperture size of the sensing
radiometer - often many centimeters in scale.

Active technologies offer the possibility of multi - dimensional imaging at finer
spatial scales, although it remains to be seen whether they can monitor temperature
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changes at spatial resolutions below one centimeter and thermal resolutions of less than
one degree centigrade. This review will focus on electrical impedance imaging, usually
identified by the use of electric currents oscillating below 10 MHz, and microwave
imaging, encompassing the use of electromagnetic signals at frequencies below 3 GHz
and as low as 300 MHz. In each case, the basic physical principles involved with the
method will be described followed by a historical review of the major accomplishments
which have been achieved to date. Emphasis will be directed towards those results of
particular importance to thermal therapy monitoring and assessment, although some
attention will be given to other related applications of these methods. For each method,
representative examples of state -of- the -art findings will be presented and discussed. In
this regard, data will be drawn largely from the author's experiences with these
technologies. The intent is to illustrate current progress rather than provide an exhaustive
review of the complete spectrum of results that are available in the literature. The hope is
that this will provide the reader with a sense of how far electromagnetic methods have
progressed towards the goal of monitoring and assessing thermal therapies.

2. ELECTRICAL IMPEDANCE IMAGING

2.1 Physical Principles

Electrical Impedance Imaging or Electrical Impedance Tomography (EIT)
exploits low frequency electrical signals in the 10 KHz to 10 MHz range to determine
tissue electrical properties over this portion of the electromagnetic spectrum. At these
frequencies, electric fields induced in the body are created through direct contact
electrodes. Two modes of operation are possible. Current mode drives known current
patterns through surface electrodes positioned around the body in the region of interest.
These injected currents cause an electric potential distribution to develop at measuring
electrodes which depends on the electrical property constituents within the tissue.
Images are formed by estimating the electrical property profile needed to create the
measured potential distribution given the known driving current patterns. Voltage mode
is the other operational approach. In this case the role of voltage and current are exactly
reversed (compared to current mode). A predetermined voltage pattern is applied to the
surface electrodes and the resulting current distribution is measured. The electrical
properties of the intervening tissue dictates how the induced currents will flow. Figure 1
contains a conceptual drawing of the EIT process. It illustrates how contact electrodes are
placed around the tissue in order to produce an image of the region of interest.

EIT Image of the Arm
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Figure 1: Schematic of the electrical impedance imaging process.

A recent set of articles by Gabriel et. al. summarizes much of the existing
knowledge on the electrical properties of many normal tissues over a wide frequency
band12 -14. These properties are characterized by their electrical conductivity, a, and
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electrical permittivity, e, which can exhibit considerable dispersion over the frequencies
of interest. Alterations in tissue impedance spectra are known to occur with changes in
physiological state and considerable effort has been directed towards the exploitation of
these spectral signatures for the diagnosis and characterization of tissue pathology and /or
pathophysiology. For example, electrical properties (in particular electrical conductivity)
are known to vary by approximately 2 % / °C in most tissue'''.

In the frequency range relevant to EIT, tissue electrical impedance is sensitive to
cellular morphology and tissue microarchitecture. Particularly important are membrane
structures, both intra- and extracellular, which are critical sites associated with thermally
induced tissue damage. At the low frequency end of the spectrum, the outer cell
membrane is able to charge completely within the time required to complete one period
of the applied oscillating electromagnetic field. A constant voltage is then established at
the membrane surface over most of each cycle. The oscillating current that flows inside
the cell due to membrane voltage changes is negligible for a large fraction of each period,
limiting the electrical current flow to the extracellular medium. As the frequency of the
applied field is increased, a point is reached where the time required to charge the intra
and extracellular membrane is long relative to the duration of the period, creating a
persistent voltage change at these membranes which translates into a sizable intracellular
current flow. At even higher frequencies, dipolar reorientation of proteins and tissue
organelles can occur. Hence, the electrical property spectrum for higher frequencies
contains information about the intracellular environment making it well- suited for
sensing tissue changes due to a thermal insult.

At frequencies below 10 MHz, electromagnetic fields in tissue are governed by
the complex -valued Laplace equation

V(a- icos)VcD =O (1)
where 6 is the electrical conductivity, a is the electrical permittivity, 0) is the angular
frequency of the applied currents (current mode) or impressed voltages (voltage mode), i
is the square root of -1, and c is the resulting electrical potential. In current mode, the
potential distribution is driven by an enforced current density distribution on the body
surface at the electrode sites such that

(6 - icoE)îñ VC = -`lin l2 (2)

on the electrode and zero elsewhere, í is the outward -pointing normal direction on the
electrode surface and Tin is the applied current density. Voltage mode is mathematically
similar except that 43 is dictated at the electrodes and J in (2) is the measured quantity.

The majority of efforts to recover spatial distributions of electrical properties, 6
and £, from the impedance data have exploited advanced computational methods.
Generally, two strategies have emerged. The first is back -projection which is common in
CT; however, rather than back -project along straight lines (as with x- rays), curved paths
are used which are derived from solutions to (1) when a localized current (or voltage)
stimulus is applied at one point (electrode) on the boundary and measured at other points
(electrodes) on the tissue surface15-'s. Back projection algorithms are fast providing the
opportunity for real -time imaging of physiological process such as lung air volumet9_2';
however, they have generally not been quantitative with respect to the electrical
properties that are recovered. They provide useful visual images of electrical property
contrast but they do not accurately estimate the actual property values.

The second approach is model -based methods which repeatedly solve (1) to
estimate electrical property distributions21-24. These schemes are essentially optimization
problems which seek to find the electrical property profiles which allow the model (i.e.
equation 1) to best match the data according to some criterion. Typically, least squares
objectives are used to find the best data -model match, although multi- component
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objectives which include additional criteria such as total variation minimization have also

been considered. These algorithms have often deployed a numerical method such as

finite elements to compute solutions to (1); however, in certain cases analytical methods
have proved successful as well. Minimization of the squared error objective function
leads to a nonlinear system of equations that can be solved with classical techniques such

as Newton's method. Property estimation based on iteratively minimizing the squared
error between computed and measured data (voltage in current mode or current in voltage

mode) requires computation of the rate of change of the solution to (1) for a small change

in tissue electrical properties at a single location in the tissue volume of interest. While
numerical differentiation is one approach which has been used, it is also possible to
develop a partial differential equation in terms of the desired derivatives. In particular,
differentiating equation (1) with respect to the kth member of an expansion function that
defines the electrical conductivity distribution as

N

O.= 1óktPk
k =1

leads to

a [0(6- icoE)oc3] =p.
a6 0C. +0(6- icoE)V =0 (3)

ó6k aók aók j

Defining = 413', equation (3) becomes
dak

V (6- icoe)V4'= V ---VI (4)
aCTic

which is identical to equation (1) in the quantity 43' except for the occurrence of the
right- hand -side quantity expressed in terms of 43. Once equation (1) is solved for 4 for
the current estimate of the electrical properties, a and E, equation (4) can be computed for

the derivative of the solution with respect to all of the ak values which parameterize the

electrical conductivity distribution throughout the tissue region of interest. A similar
equation can be developed for derivatives with respect to the permittivity profile. These
derivatives define the Jacobian or sensitivity matrix which is incorporated into the
process of updating the electrical properties from an initial estimate. Because the

measured surface quantities are nonlinear functions of the electrical property distribution,
retaining the nonlinearity is essential if obtaining quantitative estimates of property
values are desired.

Since image reconstruction in the model -based context is essentially a nonlinear
optimization problem, a variety of solution schemes, beyond Newton's method exist to

minimize the stated objective by evolving the tissue electrical property distribution.
Included in the suite of possibilities are randomization processes which have also been

investigated. For large parameterizations of the electrical properties, these random
methods tend to become very slow, although they can be particularly useful for avoiding

local minima in the solution space. Overall, however, Newton's method has been very
popular having proved to be a reasonable compromise between computational costs and
image quality for model -based image reconstruction for EIT.

3. Historical Perspective

Considerable progress was realized in the development of EIT as a general
imaging method during the early to mid 1980s. The efforts of two groups - the
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Sheffield team lead by Barber and Brown and the Renselaer team lead by Newell and
Isaacson - were paramount in this regard. Under the direction of Brown several
theoretical studies were conducted which helped to define characteristics of the imaging
method, for example, its spatial resolution and depth sensitivity as a function of electrode
number25. These were followed by investigations which led to the realization of a multi-
channel hardware system championed by Barber'''. Further developments resulted in
image reconstruction based on back projection along curved paths defined by
equipotential solutions to Laplace's equation"-".

The Sheffield group also pioneered the use of multiple frequencies to elicit the
spectral responses of imaged tissue34-36. This spectroscopic electrical impedance
tomography (EITS) technique, often referred to as electrical impedance spectroscopy
(EIS) was first realized through a dual- frequency system which was later expanded to
include the choice of up to eight discrete frequencies. Image reconstructions in
laboratory phantoms and in the lung in vivo were demonstrated over the frequency band
of the data collection. Image pixel spectral responses were also extracted showing for the
first time true spatially -resolved EIS3 .

The RPI team contributed significantly towards the early development of EIT37-
40 as an imaging modality on both theoretical and practical grounds. In a landmark
paper41 Isaacson showed that the maximum distinguishability of an internal electrical
heterogeneity occurred when currents were applied simultaneously to all peripherally -
located electrodes in sinusoidal patterns of increasing spatial frequency. This finding
lead to an intensive effort to realize high quality current drivers which could modulate the
output amplitude at each electrode. Reconstruction algorithms based on analytical
Laplace equation solutions that were used to update a homogeneous estimate of the
electrical properties in a single iteration were shown to yield high quality electrical
impedance images of objects placed in a saline tank42a4. Efforts to define and adaptively
produce optimal current patterns using on -line measurements soon followed45. Images of
both conductivity and permittivity distributions were demonstrated. Several advances to
the RPI hardware system were reported over the years with the latest essentially
providing real -time imaging through ultrafast parallel data acquisition and concomitant
image reconstruction. In an impressive experiment, the RPI team showed the ability to
reconstruct a high- contrast copper ball as it swung on a pendulum through a saline tank
30 cm in diameter39. While the exact size of the ball was not accurately resolved (it was
blurred to a size of approximately 5cm), the data collection and image reconstruction was
sufficiently fast and accurate enough to track the ball location.

The ideas for using EIT as a thermal imaging technique during therapeutic tissue
heating first began to appear in the mid to late 1980s. Conway, Griffiths and Hawley
reported important early experiences in this regard46-49 Images were two- dimensional
involving idealized phantom studies which suggested that temperature resolutions on the
order of a degree were possible to achieve. By the early 1990s efforts to integrate EIT
systems with hyperthermia equipment were underway. Hawley and coworkers48
combined EIT measurements in phantoms heated with a capacitive hyperthermia device
operating at 27 MHz. The study included use of a heterogeneous phantom consisting of a
127 mm diameter muscle equivalent cylinder having foam inserts. Regional analysis
around each of eight temperature probe locations showed that the EIT images yielded a
good correlation with temperature increase over a 20 minute period with a standard error
estimate of 0.75 °C. However, in the central location of the phantom, EIT sensitivity to
temperature changes was significantly compromised.

In vivo experiments were also conducted on volunteers who consumed liquids
of temperatures of 37 °C and 47 °C. The order in which the liquids were introduced was
randomized and an imaging experiment was performed at least twice at each temperature.
Images were reported which showed changes in resistivity relative to an empty stomach.
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The spatial resolution of the images produced was estimated to be 4 -8 cm with a slice
thickness ranging from 4 cm at the periphery to nearly 8 cm at the center; however, the
temperature sensitivity could not be calculated from these qualitative experiments.

The group at Dartmouth expanded on these thermal experiments in phantoms24'5°
as well as in vivo in both animal" and human subjects51'52. These researchers developed
the idea of exploiting internal measurements of electrical potential to improve the spatial
resolution at depth with the EIT technique. In a series of simulation experiments
involving a realistic body cross- section derived from anatomical CT scans of the pelvis,
they showed mean and maximum temperature errors along catheter tracks as a function
of the use of internal data and the degree of prior anatomical information that was
available. Mean errors were less than 0.5 °C with maximum errors generally less than 2 °C
that approached 1°C when internal data and prior information were used. In a follow -up
series of simulations Paulsen and Jiang53 found average temperatures were below 1°C
provided prior anatomical information was included even in the face of added
measurement noise of 1% and greater.

In a related set of phantom experiments, Moskowitz et. aí.50 found temperature
predictions were accurate to better than 1°C on average when using data from surface
electrodes combined with internal linear arrays. These experiments involved ultrasound
heating of an agar target region suspended in gel confined within an 18 cm cylindrical
tank. Sixteen stainless steel 3 cm electrodes were mounted to the inside boundary of the
phantom container. The impedance hardware system operated in current mode applying
the simultaneous excitation patterns of Isaacson which possess increasing spatial
frequencies. Heating occurred continuously for 60 minutes with impedance data
acquisitions and subsequent conductivity profiles reconstructed at 10 minute intervals.
Overall, the results were quite satisfying and clearly illustrated the ability to localize a
temperature rise within the phantom based on surface data augmented with internal
measurements. At 30 and 60 minutes of heating, mean temperature errors ranged from
1°C to 1.6 °C without internal recordings and 0.6 °C to 0.7 °C with internal data.

These laboratory experiments were followed by in vivo studies in animal and
human subjects51'52. In the animal, heating took place on the thigh using a microwave
spiral antenna operating at 433 MHz. A 32- electrode array arranged in a circumferential
geometry was used to drive current and measure voltage during experiments. Electrodes
were constructed using wet- etched printed circuit board techniques which were custom -
sized based on pretreatment anatomical measurements. Temperature data was recorded
along eight subsurface tracks with fiberoptic probes that were manually translated back
and forth inside of catheters in 5 mm increments. Typical images and analysis of the
animal encounters are described elsewhere51.

Several similar clinical cases in humans have been reported by this group51'52
Superficial lesions were heated with the same 433 MHz spiral applicator. Electrodes
were designed to lie flat on the body surface encompassing the tumor. As in the animal
experiments, 32 electrodes were incorporated into a flexible array that was wet -etched on
a thin polymide sheet to produce the required array pattern. Temperature data was
recorded along two parallel tracks through the tumor every 2 -3 minutes during the course
of the therapy session and for several minutes at the end of treatment once power to the
heating applicator had been turned off. Results from a typical clinical heating included
reconstructed difference images over the time course of therapy. These images revealed
a clear progression of the heating, then cooling which takes place as evidenced by the
recovered increase, then decrease in electrical conductivity relative to baseline
conditions. Areas of maximal change in conductivity correlated with the regions of
highest measured temperatures during most of a treatment. Direct comparisons to
measured temperatures were performed by translating the conductivity image changes
into temperature estimates using an assumed temperature coefficient for tissue (nominally
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The spatial resolution of the images produced was estimated to be 4-8 cm with a slice 
thickness ranging from 4 cm at the periphery to nearly 8 cm at the center; however, the 
temperature sensitivity could not be calculated from these qualitative experiments.

The group at Dartmouth expanded on these thermal experiments in phantoms24,50 
as well as in vivo in both animal51 and human subjects51,52. These researchers developed 
the idea of exploiting internal measurements of electrical potential to improve the spatial 
resolution at depth with the EIT technique. In a series of simulation experiments 
involving a realistic body cross-section derived from anatomical CT scans of the pelvis, 
they showed mean and maximum temperature errors along catheter tracks as a function 
of the use of internal data and the degree of prior anatomical information that was 
available. Mean errors were less than 0.5°C with maximum errors generally less than 2°C 
that approached 1 °C when internal data and prior information were used. In a follow-up 
series of simulations Paulsen and Jiang53 found average temperatures were below 1°C 
provided prior anatomical information was included even in the face of added 
measurement noise of 1% and greater.

In a related set of phantom experiments, Moskowitz et. al.50 found temperature 
predictions were accurate to better than 1 °C on average when using data from surface 
electrodes combined with internal linear arrays. These experiments involved ultrasound 
heating of an agar target region suspended in gel confined within an 18 cm cylindrical 
tank. Sixteen stainless steel 3 cm electrodes were mounted to the inside boundary of the 
phantom container. The impedance hardware system operated in current mode applying 
the simultaneous excitation patterns of Isaacson which possess increasing spatial 
frequencies. Heating occurred continuously for 60 minutes with impedance data 
acquisitions and subsequent conductivity profiles reconstructed at 10 minute intervals. 
Overall, the results were quite satisfying and clearly illustrated the ability to localize a 
temperature rise within the phantom based on surface data augmented with internal 
measurements. At 30 and 60 minutes of heating, mean temperature errors ranged from 
1°C to 1.6°C without internal recordings and 0.6°C to 0.7°C with internal data.

These laboratory experiments were followed by in vivo studies in animal and 
human subjects51,52. In the animal, heating took place on the thigh using a microwave 
spiral antenna operating at 433 MHz. A 32-electrode array arranged in a circumferential 
geometry was used to drive current and measure voltage during experiments. Electrodes 
were constructed using wet-etched printed circuit board techniques which were custom­
sized based on pretreatment anatomical measurements. Temperature data was recorded 
along eight subsurface tracks with fiberoptic probes that were manually translated back 
and forth inside of catheters in 5 mm increments. Typical images and analysis of the 
animal encounters are described elsewhere51.

Several similar clinical cases in humans have been reported by this group51,52. 
Superficial lesions were heated with the same 433 MHz spiral applicator. Electrodes 
were designed to lie flat on the body surface encompassing the tumor. As in the animal 
experiments, 32 electrodes were incorporated into a flexible array that was wet-etched on 
a thin polymide sheet to produce the required array pattern. Temperature data was 
recorded along two parallel tracks through the tumor every 2-3 minutes during the course 
of the therapy session and for several minutes at the end of treatment once power to the 
heating applicator had been turned off. Results from a typical clinical heating included 
reconstructed difference images over the time course of therapy. These images revealed 
a clear progression of the heating, then cooling which takes place as evidenced by the 
recovered increase, then decrease in electrical conductivity relative to baseline 
conditions. Areas of maximal change in conductivity correlated with the regions of 
highest measured temperatures during most of a treatment. Direct comparisons to 
measured temperatures were performed by translating the conductivity image changes 
into temperature estimates using an assumed temperature coefficient for tissue (nominally
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2 % / °C). These analyses demonstrated that temperature accuracies were 1.3 °C on
average, although maximum deviations of 10 °C or more also occurred. In the areas of
high error, increasing conductivity did not translate into increasing temperature,
especially at the later time -points during treatment.

These results suggest that permanent change may have taken place in the heated
tissue which was responsible for the nonlinear behavior in the imaged conductivity
change. Cool down data also supported this hypothesis as the images produced sometime
after power was turned off had conductivity distributions that did not return to their
starting values. Further, the largest deviations from baseline correlated with those areas
which sustained the most thermal dose. Data in the literature in mouse tumor models53 -54

also demonstrates the concept that linear variation in conductivity with temperature
occurs during an initial heat -up phase in tissue, but gives way to nonlinear behavior as the
amount of tissue injury from thermal exposure progresses during treatment. The idea that
EIT imaging could follow this type of tissue injury progression due to thermal insult is
intriguing and potentially more important and /or useful than monitoring temperature
change, which is, in essence, an indirect vehicle for estimating the thermal dose delivered
to tissue.

4. Illustrative Results

4.1 Hardware System Design

Considerable effort has been devoted to the realization of multi -channel, fixed
frequency EIT hardware systems. Recent literature describes a number of EIT
approaches which have focused on different aspects of instrumentation design. For
example, Koukourlis et. al.55 constructed a 32- electrode, 25 KHz device which
emphasized data acquisition techniques. Smith et. aí.56 realized a 16- electrode, 20 KHz
system with a design for achieving real -time imaging speeds. Cook et. aí.39 also
developed a real -time imaging system consisting of 32 electrodes operating at 30 KHz
but strove to achieve true 16 -bit measurement precision as well. Comparisons have been
made of these instruments across a number of hardware performance benchmarks relative
to a system recently reported by Hartov et. a1.57

The Hartov design includes a continuously -selectable driving frequency up to 1
MHz, either voltage or current source modes of operation and simultaneous measurement
of both voltage and current on each channel in either of those driving configurations.
VDC signal -to -noise ratios of 75 -80 dB have been achieved with the noise floor for AC
signals near 100 dB below the applied signal strength at 10 KHz and 60 dB down at 1
MHz. The added benefit of being able to record multi -spectral information on source and
sense amplitudes and phases has also been realized. Phase sensitive detection and multi -
period undersampling techniques have been deployed to ensure measurement fidelity
over the full bandwidth of the system.

Figure 2 shows a photograph of this hardware realization. It currently consists
of 32 channels multiplexed and controlled by a 200 MHz Pentium II PC via a 32 -bit
digital I/O board. Each channel is individually programmed with 12 -bit accuracy to
produce a given amplitude, sinusoidal signal (+ 12 V, + 50 mA max). A reference
sinusoid is produced at user -defined frequencies (DC to 1 MHz in 625 Hz increments) by
a 12 -bit, 40 MHz D/A waveform generator. Relays are used to switch separate voltage or
current -source stages to the output for voltage or current modes of operation. A 16 -bit,
200 KHz sampling rate A/D is used to digitize and record the measurements. Unlike
many EIT systems, the measured signal amplitude and phase is not provided through
hardware, but rather the voltage drop is detected across a sense resistor and a digital lock-
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2%/°C). These analyses demonstrated that temperature accuracies were 1.3°C on 
average, although maximum deviations of 10°C or more also occurred. In the areas of 
high error, increasing conductivity did not translate into increasing temperature, 
especially at the later time-points during treatment.

These results suggest that permanent change may have taken place in the heated 
tissue which was responsible for the nonlinear behavior in the imaged conductivity 
change. Cool down data also supported this hypothesis as the images produced sometime 
after power was turned off had conductivity distributions that did not return to their 
starting values. Further, the largest deviations from baseline correlated with those areas 
which sustained the most thermal dose. Data in the literature in mouse tumor models53'54 
also demonstrates the concept that linear variation in conductivity with temperature 
occurs during an initial heat-up phase in tissue, but gives way to nonlinear behavior as the 
amount of tissue injury from thermal exposure progresses during treatment. The idea that 
EIT imaging could follow this type of tissue injury progression due to thermal insult is 
intriguing and potentially more important and/or useful than monitoring temperature 
change, which is, in essence, an indirect vehicle for estimating the thermal dose delivered 
to tissue.

4. Illustrative Results

4.1 Hardware System Design

Considerable effort has been devoted to the realization of multi-channel, fixed 
frequency EIT hardware systems. Recent literature describes a number of EIT 
approaches which have focused on different aspects of instrumentation design. For 
example, Koukourlis et. al.55 constructed a 32-electrode, 25 KHz device which 
emphasized data acquisition techniques. Smith et. al.56 realized a 16-electrode, 20 KHz 
system with a design for achieving real-time imaging speeds. Cook et. al.39 also 
developed a real-time imaging system consisting of 32 electrodes operating at 30 KHz 
but strove to achieve true 16-bit measurement precision as well. Comparisons have been 
made of these instruments across a number of hardware performance benchmarks relative 
to a system recently reported by Hartov et. al.57

The Hartov design includes a continuously-selectable driving frequency up to 1 
MHz, either voltage or current source modes of operation and simultaneous measurement 
of both voltage and current on each channel in either of those driving configurations. 
VDC signal-to-noise ratios of 75-80 dB have been achieved with the noise floor for AC 
signals near 100 dB below the applied signal strength at 10 KHz and 60 dB down at 1 
MHz. The added benefit of being able to record multi-spectral information on source and 
sense amplitudes and phases has also been realized. Phase sensitive detection and multi­
period undersampling techniques have been deployed to ensure measurement fidelity 
over the full bandwidth of the system.

Figure 2 shows a photograph of this hardware realization. It currently consists 
of 32 channels multiplexed and controlled by a 200 MHz Pentium II PC via a 32-bit 
digital I/O board. Each channel is individually programmed with 12-bit accuracy to 
produce a given amplitude, sinusoidal signal (± 12 V, + 50 mA max). A reference 
sinusoid is produced at user-defined frequencies (DC to 1 MHz in 625 Hz increments) by 
a 12-bit, 40 MHz D/A waveform generator. Relays are used to switch separate voltage or 
current-source stages to the output for voltage or current modes of operation. A 16-bit, 
200 KHz sampling rate A/D is used to digitize and record the measurements. Unlike 
many EIT systems, the measured signal amplitude and phase is not provided through 
hardware, but rather the voltage drop is detected across a sense resistor and a digital lock-
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in amplifier algorithm is implemented in software to extract the signal amplitude and
phase at the frequency of interest.

Figure 2: Photograph of the hardware
system reported by Hartov et al.'

To maintain the integrity of the
discretized waveform in terms of
preserving its spectral content,
the Nyguist sampling rate (twice
the highest frequency) must be
obeyed. A/D boards typically
possess analog bandwidths that
are 5 to 10 times higher than their
highest sampling rate. To take
advantage of this bandwidth an
undersampling scheme is realized
that increases the overall effective
sampling rate. If the ratio of the
sampling frequency to signal
frequency is reduced to mutually

prime factors that ratio represents the number of unique samples that are recorded. If this
sampling rate is too high for the sampling rate of the A/D board it can be reduced by
collecting the desired number of samples over more than one period of the sampled
waveform. Hence, the same effective sampling rate can still be achieved, but the samples
occur out of order. Figure 3 illustrates the point. The faster sampling rate is sufficiently
high to capture the desired signal with the samples recorded in their natural order as
shown. The slower sampling rate, on the other hand, requires two periods to complete a
single cycle of the signal sampling. When these samples are presented in their natural
order they produce the aliased waveform appearing in Figure 3. However, they contain
the identical set of sampling positions within the signal period as those produced by the
higher sampling rate and can, therefore, reproduce the sampled signal of interest provided
they are properly ordered.
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Figure 3:. A 16,100 Hz signal sampled at two rates with samples plotted in order of acquisition.

This method of selecting a sampling frequency is much faster than skipping
whole numbers of signal periods in order sample at allowable intervals. The cycle -
skipping technique consists of waiting a sufficient number of cycles plus the effective
sampling period in order to acquire the samples in the correct order and with an effective
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in amplifier algorithm is implemented in software to extract the signal amplitude and 
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high to capture the desired signal with the samples recorded in their natural order as 
shown. The slower sampling rate, on the other hand, requires two periods to complete a 
single cycle of the signal sampling. When these samples are presented in their natural 
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higher sampling rate and can, therefore, reproduce the sampled signal of interest provided 
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sampling rate which is much higher than that possible by direct, single -period sampling.
Figure 4 demonstrates the cycle- skipping approach. In this case, the real sampling
period, Ts, is the sum of some number of full signal cycles (Trig in Figure 4) plus the

effective sampling period Te in Figure 4). This cycle- skipping strategy can be more than

an order of magnitude slower than the multi -period scheme described in Figure 3.
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Figure 4: An illustration of multi -period undersampling using the cycle- skipping technique

4.2 Software Interface

The interface software developed by Hartov and colleagues involves the
integration of several components including the waveform generator and A/D board
which are operated through software libraries provided by the manufacturer. The
customized channel module boards, on the other hand, require custom low -level drivers
for the digital interface. Control instructions originate with the user and eventually reach
the EIS hardware whereas measurement data flows the electrodes, passing through the
data acquisition subsystem and ending with the control program where it can be used for
image reconstruction.

The majority of core functions contained within the software reside in a special
library known as Active X Control or OCX. This implementation allows a variety of
commercial and custom programs to use Active X controls to extend their functionality.
The OCX does not provide a user interface per se, but allows the algorithms in which it is
embedded to serve as the vehicles for user inputs. Written in C + +, the OCX is arranged
in a hierarchical manner with high level functions located at the top of the hierarchy. The
commercial device drivers at the bottom of the hierarchy are hidden behind generic
interface objects so that the driver and its associated hardware may be changed without
affecting any existing code. The custom software that drives the EIS channel boards uses
a similar hierarchical structure to isolate hardware- related algorithms in order to limit the
amount of code that must be rewritten when the hardware is modified or updated.

The primary user interface to the hardware system provides a control panel that
allows digital servicing of all of the functions of the hardware system. An on- screen
view of this control -panel is provided in Figure 5. This interface permits complete
manual control of each channel. For example, the horizontal sliders in the figure allow
independent voltage scaling for each channel. The software converts the position of the
sliders to a 12-bit interger that the embedded Active X control then loads directly onto
the channel board DAC through the digital electronics interface. As shown in the figure,
the user can also select between an applied voltage or an applied current. The vertical
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sampling rate which is much higher than that possible by direct, single-period sampling. 
Figure 4 demonstrates the cycle-skipping approach. In this case, the real sampling 
period, Ts, is the sum of some number of full signal cycles (7^, in Figure 4) plus the

effective sampling period Te in Figure 4). This cycle-skipping strategy can be more than 
an order of magnitude slower than the multi-period scheme described in Figure 3.
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4.2 Software Interface

The interface software developed by Flartov and colleagues involves the 
integration of several components including the waveform generator and A/D board 
which are operated through software libraries provided by the manufacturer. The 
customized channel module boards, on the other hand, require custom low-level drivers 
for the digital interface. Control instructions originate with the user and eventually reach 
the EIS hardware whereas measurement data flows the electrodes, passing through the 
data acquisition subsystem and ending with the control program where it can be used for 
image reconstruction.

The majority of core functions contained within the software reside in a special 
library known as Active X Control or OCX. This implementation allows a variety of 
commercial and custom programs to use Active X controls to extend their functionality. 
The OCX does not provide a user interface per se, but allows the algorithms in which it is 
embedded to serve as the vehicles for user inputs. Written in C++, the OCX is arranged 
in a hierarchical manner with high level functions located at the top of the hierarchy. The 
commercial device drivers at the bottom of the hierarchy are hidden behind generic 
interface objects so that the driver and its associated hardware may be changed without 
affecting any existing code. The custom software that drives the EIS channel boards uses 
a similar hierarchical structure to isolate hardware-related algorithms in order to limit the 
amount of code that must be rewritten when the hardware is modified or updated.

The primary user interface to the hardware system provides a control panel that 
allows digital servicing of all of the functions of the hardware system. An on-screen 
view of this control-panel is provided in Figure 5. This interface permits complete 
manual control of each channel. For example, the horizontal sliders in the figure allow 
independent voltage scaling for each channel. The software converts the position of the 
sliders to a 12-bit interger that the embedded Active X control then loads directly onto 
the channel board DAC through the digital electronics interface. As shown in the figure, 
the user can also select between an applied voltage or an applied current. The vertical

Proc. of SPIE Vol. 10297  102970J-9



494 / Critical Reviews Vol. CR75

slider located along the right edge of the control panel allows the user to select a
particular readback channel.
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the user for experimental parameters and then
each acquisition, the voltage or current
amplitude at each electrode will be
automatically set and recorded
measurement information will be
stored for subsequent numerical
processing.

Figure 6: Automatic Control Panel

4.3 Phantom Experiments

Typically, initial imaging
system characterization and calibration
is performed in phantoms prior to
progressing to in vivo conditions. In
this regard, saline filled tanks or agar
objects that contain contrasting
inclusions are used to evaluate imaging
system performance. Figure 7 shows a
schematic of a phantom imaging experiment involving a saline tank with a single
embedded target surrounded by 32 peripherally -located electrodes. Recently, Kerner et.
al.58 have used this arrangement to assess the image quality of reconstructions obtained
from data collected with the Hartov et. al.57 EIS instrumentation. Here, a summary of this
experience is reported as a representative example of the kinds of images and resolution
measures that can be obtained with electrical impedance imaging.

Figure 5: Manual Control Panel

The software also provides a control
panel that automates data acquisition
as shown in Figure 6. By engaging
the button labeled "Acquire Data," the
user may recorded and display a
measurement. The program shows the
measured amplitude and phase, real
and imaginary components of the
current and voltage or the two -
element RC- equivalent load on each
channel. A sequence of recordings
involving all available channels (or
any subset thereof) can be encoded,
and the software will automatically
select the appropriate, user -specified
scaling at each electrode. If the user
selects the button labeled "Run
Experiment," the software will prompt

perform a series of data acquisitions. For
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slider located along the right edge of the control panel allows the user to select a 
particular readback channel.

Figure 5: Manual Control Panel

The software also provides a control 
panel that automates data acquisition 
as shown in Figure 6. By engaging 
the button labeled “Acquire Data,” the 
user may recorded and display a 
measurement. The program shows the 
measured amplitude and phase, real 
and imaginary components of the 
current and voltage or the two- 
element RC-equivalent load on each 
channel. A sequence of recordings 
involving all available channels (or 
any subset thereof) can be encoded, 
and the software will automatically 
select the appropriate, user-specified 
scaling at each electrode. If the user 
selects the button labeled “Run 
Experiment,” the software will prompt 

the user for experimental parameters and then perform a series of data acquisitions. For 
each acquisition, the voltage or current 
amplitude at each electrode will be 
automatically set and recorded 
measurement information will be 
stored for subsequent numerical 
processing.
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Typically, initial imaging 
system characterization and calibration 
is performed in phantoms prior to 
progressing to in vivo conditions. In 
this regard, saline filled tanks or agar 
objects that contain contrasting 
inclusions are used to evaluate imaging 
system performance. Figure 7 shows a 
schematic of a phantom imaging experiment involving a saline tank with a single 
embedded target surrounded by 32 peripherally-located electrodes. Recently, Kerner et. 
al.58 have used this arrangement to assess the image quality of reconstructions obtained 
from data collected with the Hartov et. al.57 EIS instrumentation. Here, a summary of this 
experience is reported as a representative example of the kinds of images and resolution 
measures that can be obtained with electrical impedance imaging.
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Overall Saline Tank Setup
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Figure 7: Experimental setup for phantom tank imaging studies
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The tank used by Kerner was machined from a section of plastic pipe 20 cm in
diameter and 6 cm tall where a circular Lucite base was attached and leak -proofed.
Thirty-two 1 mm thick line electrodes were equally- spaced around the tank periphery.
These electrodes were common iron paper clips snapped along the side of the tank.
Approximately 70% of the straight portion of the paper clip was submerged in saline with
the remaining round part hung over the top and outside of the tank for support and
electrical connection to the hardware. The tank was filled to 4 cm height with 0.9%
agueous NaCI solutions. Conducting and nonconducting test objects of various diameters
(0.32, 0.64, 0.95, 2.54 and 3.4 cm) were placed in the tank at increasing depths (1, 2, 4
and 8 cm) from the tank surface. A full suite of imaging experiments were conducted for
all five target sizes at each of 4 depths for both the conducting and nonconducting
objects. Conductors were brass cylinders while nonconductors were solid nylon rods.
Data was acquired at 10 frequencies and generally took about 3.5 minutes.

All the EIS images reported here display conductivity (S /m) as a function of
position (x, y axes are in meters). In Figure 8, the absolute conductivity image of a blank
tank, of one target 2 cm from electrode 12 and of two targets 2 cm in depth (from
electrode 10 and electrode 26) are shown at 10 kHz. The targets were 3.4 cm wide nylon
nonconductors and brass conductors. For the most part, the 6 values recovered are
physically meaningful. In these images, the background is determined to have a
conductivity - 2 S/m which was close to the actual value of 1.98 S /m. The nonconducting
object in the images appears to have a conductivity near 0 S/m which is also close to the
actual value of 1x10 -9 S /m. The conducting object appears to have a conductivity --3.7
S/m which is far below the actual value of 1.43 x 10 S /m. The slight inhomogeneities
around the periphery of the images correspond to artifacts due to the electrodes.
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Figure 8: Absolute conductivity images (S /m) at 10 kHz. From left to right (a) blank tank, (b) 3.4
cm wide nonconductor by electrode 12, and (c) 3.4 cm wide nonconductor by electrode 10 and 3.4
cm wide conductor by electrode 26.

Figure 9 shows how the resolution of targets increases with frequency. In this figure, all
of the images depict absolute reconstructions of a 3.4 cm wide conductor in the same
position, i.e. 2 cm from electrode 21. At 10 kHz, the background appears most
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The tank used by Kerner was machined from a section of plastic pipe 20 cm in 
diameter and 6 cm tall where a circular Lucite base was attached and leak-proofed. 
Thirty-two 1 mm thick line electrodes were equally-spaced around the tank periphery. 
These electrodes were common iron paper clips snapped along the side of the tank. 
Approximately 70% of the straight portion of the paper clip was submerged in saline with 
the remaining round part hung over the top and outside of the tank for support and 
electrical connection to the hardware. The tank was filled to 4 cm height with 0.9% 
agueous NaCl solutions. Conducting and nonconducting test objects of various diameters 
(0.32, 0.64, 0.95, 2.54 and 3.4 cm) were placed in the tank at increasing depths (1, 2, 4 
and 8 cm) from the tank surface. A full suite of imaging experiments were conducted for 
all five target sizes at each of 4 depths for both the conducting and nonconducting 
objects. Conductors were brass cylinders while nonconductors were solid nylon rods. 
Data was acquired at 10 frequencies and generally took about 3.5 minutes.

All the EIS images reported here display conductivity (S/m) as a function of 
position (x, y axes are in meters). In Figure 8, the absolute conductivity image of a blank 
tank, of one target 2 cm from electrode 12 and of two targets 2 cm in depth (from 
electrode 10 and electrode 26) are shown at 10 kHz. The targets were 3.4 cm wide nylon 
nonconductors and brass conductors. For the most part, the o values recovered are 
physically meaningful. In these images, the background is determined to have a 
conductivity ~ 2 S/m which was close to the actual value of 1.98 S/m. The nonconducting 
object in the images appears to have a conductivity near 0 S/m which is also close to the 
actual value of ~lxl0'9 S/m. The conducting object appears to have a conductivity ~3.7 
S/m which is far below the actual value of 1.43 x 10® S/m. The slight inhomogeneities 
around the periphery of the images correspond to artifacts due to the electrodes.

Figure 8: Absolute conductivity images (S/m) at 10 kHz. From left to right (a) blank tank, (b) 3.4 
cm wide nonconductor by electrode 12, and (c) 3.4 cm wide nonconductor by electrode 10 and 3.4cm wide nonconductor by electrode 12, and (c) 3.4 cm wide nonconductor by electrode 10 and 3.4 
cm wide conductor by electrode 26.

Figure 9 shows how the resolution of targets increases with frequency. In this figure, all 
of the images depict absolute reconstructions of a 3.4 cm wide conductor in the same 
position, i.e. 2 cm from electrode 21. At 10 kHz, the background appears most
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inhomogeneous and there is a pronounced halo around the target. At 125 kHz, there is
less of a halo around the target. At 950 kHz, the halo is least pronounced and the saline
background appears most homogeneous.
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Figure 9: Absolute conductivity images (S /m) of the same 2.54 cm wide nonconducting target 2
cm from electrode 10 at 2 frequencies. From left to right (a) 10 kHz, (b) 125 kHz, and (c) 950 kHz.
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Figures 11 and 12 indicate that difference images enhance the contrast relative
to absolute images at a given frequency. In this case, a 2.54 cm wide conductor was
placed 2, 4, and 8 cm from electrode 10. The electrode artifacts were consistently
attenuated in the difference images. When the object is 2 cm from the edge, one can
localize the target in both the absolute and difference images. With the object 4 cm from
the edge, one barely detect the presence of the target in the absolute image while the
target appears very clearly in the difference image. Finally, with the object 8 cm from the
edge, one can vaguely detect the presence of a target within the difference image (albeit
the target's edges are poorly defined) while no target is discernable in the absolute image.
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Figure 11: Absolute conductivity images (S /m) at 950 kHz of the same 2.54 cm wide conduct ng
target at 3 positions. From left to right (a) 2 cm, (b) 4 cm, and (c) 8 cm from electrode 10.
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Figure 12. Difference conductivity images (S /m) at 950 kHz of the same 2.54 cm wide conducting
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target at 3 positions. From left to right (a) 2 cm, (b) 4 cm, and (c) 8 cm from electrode 10.

Kerner defined this type of blurry difference image as the threshold for object detection
(i.e. maximum discernable depth) since it still could be distinguished from difference
images of successive blank tanks. Figure 13 graphically summarizes the imaging
system's resolution at 950 kHz. The difference images of conductors have the largest
maximum discernable depth. In general, wider objects can be detected at greater depths.
Also, difference images have greater discernable depths than their absolute image
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less of a halo around the target. At 950 kHz, the halo is least pronounced and the saline 
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Figure 9: Absolute conductivity images (S/m) of the same 2.54 cm wide nonconducting target 2 
cm from electrode 10 at 2 frequencies. From left to right (a) 10 kHz, (b) 125 kHz, and (c) 950 kHz.

Figures 11 and 12 indicate that difference images enhance the contrast relative 
to absolute images at a given frequency. In this case, a 2.54 cm wide conductor was 
placed 2, 4, and 8 cm from electrode 10. The electrode artifacts were consistently 
attenuated in the difference images. When the object is 2 cm from the edge, one can 
localize the target in both the absolute and difference images. With the object 4 cm from 
the edge, one barely detect the presence of the target in the absolute image while the 
target appears very clearly in the difference image. Finally, with the object 8 cm from the 
edge, one can vaguely detect the presence of a target within the difference image (albeit 
the target’s edges are poorly defined) while no target is discemable in the absolute image.

Figure 11: Absolute conductivity images (S/m) at 950 kHz of the same 2.54 cm wide conducting 
target at 3 positions. From left to right (a) 2 cm, (b) 4 cm, and (c) 8 cm from electrode 10.
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Figure 12. Difference conductivity images (S/m) at 950 kHz of the same 2.54 cm wide conducting 
target at 3 positions. From left to right (a) 2 cm, (b) 4 cm, and (c) 8 cm from electrode 10.

Kerner defined this type of blurry difference image as the threshold for object detection 
(i.e. maximum discernable depth) since it still could be distinguished from difference 
images of successive blank tanks. Figure 13 graphically summarizes the imaging 
system’s resolution at 950 kHz. The difference images of conductors have the largest 
maximum discernable depth. In general, wider objects can be detected at greater depths. 
Also, difference images have greater discernable depths than their absolute image
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counterparts. Conductors have slightly larger discernable depths than nonconductors of
equivalent size. The maximum discernable depth levels -off at 8 cm which is 2 cm away
from the tank's center (10 cm). This implies that objects must be greater than 2.5 cm in
width to be detected in the center of this phantom.
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Figure 13: Graph of maximum discernable depth vs. object width for absolute and difference
images of conductors and nonconductors at 950 kHz.

As a final example, Figure 14 shows an in vivo permittivity image of the forearm. This
result is rather impressive. First, the reconstruction recovers the permittivity response of
tissue. The major muscle masses are evident in the image along with the bone and
surrounding soft tissue.
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Figure 14: In vivo EIS image of the human arm.

5. Active Microwave Imaging
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Active microwave imaging in the medical context exploits propagating
electromagnetic fields over the spectral range of hundreds of MHz to several GHz.
Because the illuminating signals radiate from their source, direct contact with the tissue is
not necessary, although a coupling or matching medium is generally required. Typical
radiators for medical microwave imaging have included waveguides, planar antennas and
dipole or monopole arrays. In contrast to EIT where direct signal sampling is used, some
form of heterodyning is common because the tissue interrogation frequencies are too high
for plug -in A/D sampling boards. Heterodyne technique mixes two signals of nearly the
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As a final example, Figure 14 shows an in vivo permittivity image of the forearm. This 
result is rather impressive. First, the reconstruction recovers the permittivity response of 
tissue. The major muscle masses are evident in the image along with the bone and 
surrounding soft tissue.
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5.1 Physical Principles

Active microwave imaging in the medical context exploits propagating 
electromagnetic fields over the spectral range of hundreds of MHz to several GHz. 
Because the illuminating signals radiate from their source, direct contact with the tissue is 
not necessary, although a coupling or matching medium is generally required. Typical 
radiators for medical microwave imaging have included waveguides, planar antennas and 
dipole or monopole arrays. In contrast to EIT where direct signal sampling is used, some 
form of heterodyning is common because the tissue interrogation frequencies are too high 
for plug-in A/D sampling boards. Heterodyne technique mixes two signals of nearly the
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same frequency to produce their sum and difference spectral components which are
appropriately filtered to provide the intermediate frequency (IF) which can be accurately
digitized with off -the -shelf A/D cards.

In the spectral range of interest, electromagnetic fields interact with tissue in
three ways. First, they induce a conduction current through the creation of ionic flow
resulting from the forces exerted on unbound charges (ions) within the tissue. Second,
alignment and oscillation of naturally existing dipolar molecules (e.g. water) occurs with
the applied field. Depending on the size of the molecule and the frequency of the
stimulus, these dipoles either completely or partially polarize in the sense that they make
complete or partial rotations in synchrony with the oscillations in the applied field.
Third, naturally nonpolar molecules can become polarized through small movements in
bound charges of opposite sign caused by the alternating forces created by the applied
field. Clearly one of the dominant effects is the dipolar orientation of water in tissue, but
significant conduction currents can be generated and tissue macromolecules such as
proteins and organelles can also undergo dipolar reorientation as well.

Active microwave imaging has been considered to have the potential of being a
powerful medical imaging modality for many years59'63, largely based on a substantial
amount of data which has consistently shown that the electrical properties of tissues over
the frequency range of hundreds of megahertz to several gigahertz can vary an order of
magnitude or more''3,12_'4 For example, the relative permittivity can range from 5 to 80
while the conductivity can extend from 0.02 to 1.9 siemens /meter over the frequency
band 300 - 1100 MHz. In terms of soft tissue, this provides an electrical property
contrast of 20:1 or more as compared to the contrast levels of only a few percent which
are available with other imaging modalities. While initially viewed as a low -cost
alternative to CT, microwave imaging will likely play its largest role in specialty
application such as thermal imaging for therapy monitoring, assessment, and control
where electrical conductivity is known to change with temperature at a rate of several
percent per degree of temperature riser-3

At microwave frequencies, electromagnetic field interactions with tissue are
well described by Maxwell's equations for time -harmonic sources

OxE=iwpH (5a)

O x H = -iwE*E (5b)
VE= p (5c)

v-H=o (5d)

where E and H are the electric and magnetic fields, p is the charge density, CO is the

angular frequency of excitation, i = 4-1-1 and E* is the complex -valued permittivity whose
real part is proportional to the electrical permittivity, e, and imaginary part is proportional
to the electrical conductivity, 6. Typically, either E or H is eliminated in terms of its
counterpart by combining the first order curl equations into a second order system, which
for E in tissue would be written as

OxOxE-k2E=0 (6)

where k = w µc
*

In general, two serious difficulties have retarded the development of active
microwave imaging in the medical context. The first is related to equation (6) which
indicates that image reconstruction cannot realistically proceed in terms of the classical
projection -type algorithms which have dominated tomographic medical imaging63 -64
Early attempts at medical microwave imaging were not overly successful because most
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resulting from the forces exerted on unbound charges (ions) within the tissue. Second, 
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complete or partial rotations in synchrony with the oscillations in the applied field. 
Third, naturally nonpolar molecules can become polarized through small movements in 
bound charges of opposite sign caused by the alternating forces created by the applied 
field. Clearly one of the dominant effects is the dipolar orientation of water in tissue, but 
significant conduction currents can be generated and tissue macromolecules such as 
proteins and organelles can also undergo dipolar reorientation as well.

Active microwave imaging has been considered to have the potential of being a 
powerful medical imaging modality for many years59'63, largely based on a substantial 
amount of data which has consistently shown that the electrical properties of tissues over 
the frequency range of hundreds of megahertz to several gigahertz can vary an order of 
magnitude or more1'3-12'14. For example, the relative permittivity can range from 5 to 80 
while the conductivity can extend from 0.02 to 1.9 siemens/meter over the frequency 
band 300 - 1100 MHz. In terms of soft tissue, this provides an electrical property 
contrast of 20:1 or more as compared to the contrast levels of only a few percent which 
are available with other imaging modalities. While initially viewed as a low-cost 
alternative to CT, microwave imaging will likely play its largest role in specialty 
application such as thermal imaging for therapy monitoring, assessment, and control 
where electrical conductivity is known to change with temperature at a rate of several 
percent per degree of temperature rise1'3.

At microwave frequencies, electromagnetic field interactions with tissue are 
well described by Maxwell’s equations for time-harmonic sources

V x E - icojjH (5a)

V x H = -iaeE (5b)
V£ = p (5c)
VH = 0 (5d)

where E and H are the electric and magnetic fields, p is the charge density, (O is the
angular frequency of excitation, i = i-l and £ is the complex-valued permittivity whose 
real part is proportional to the electrical permittivity, e, and imaginary part is proportional 
to the electrical conductivity, <7. Typically, either E or H is eliminated in terms of its 
counterpart by combining the first order curl equations into a second order system, which 
for E in tissue would be written as

V tV xE-k2E = 0 (6)
where k2 = (O2fie .

In general, two serious difficulties have retarded the development of active 
microwave imaging in the medical context. The first is related to equation (6) which 
indicates that image reconstruction cannot realistically proceed in terms of the classical 
projection-type algorithms which have dominated tomographic medical imaging63'64. 
Early attempts at medical microwave imaging were not overly successful because most
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image reconstruction efforts adapted back -projection or back -propagation algorithms that
were well -known in CT. These approaches may have been natural at the time because
they were readily available and required relatively modest computational resources.
However, they were fundamentally inadequate because solution to (6) in heterogeneous
tissue at the frequencies of interest (i.e. below 3 GHz) reveal that a significant amount of
scattering and diffractiton exist rendering straight -line back -projection or back -
propagation algorithms of marginal utility in microwave imaging applications65

The second major technical difficulty with microwave imaging is that data
acquisition is compromised by the significant tissue attenuation of the signals to be
recorded and the potential for measurement artifacts arising from undesired scattered
fields and cross -coupling between transmit and receive elements within an imaging array.
The signal attenuation issue was exacerbated by the fact that early estimates of
achievable spatial resolution suggested that illumination frequencies needed to be in the
low gigahertz62. The limited penetration depths of electromagnetic signals at these
frequencies dictated that either unrealistic dynamic ranges had to be achieved or tissue
depths had to be restricted to clinically uninteresting dimensions.

Methods and systems evolved toward utilizing more appropriate but still highly
restrictive diffraction theory approximations60, 66 -68. Specifically, Born approximations
became the norm which develop the scattered field as an integral equation solution to (6),
except that rather than using the total field modulated by the contrast function in the
integral equation kernal, the known incident field is used instead. In effect, this assumes
that the medium does not significantly distort the incident field in order to produce its
scattering response; that is, the region of interest is weakly scattering. This is clearly a
poor assumption for biological tissue and not surprisingly, image reconstructions in
biological media which were based on Born approximations were not very satisfying
even though this approach tried to capture some of the physics embodied in equation (6).
Some qualitative images of low contrast biological stimulants were produced which did
demonstrate proof -of- principal results that were important advances in the evolutionary
growth of active microwave imaging6461' 65 -69

With the advent of considerably more computational power being available at a
modest cost, image reconstruction algorithms which model the full electromagnetic
interactions occurring in the body during microwave illumination have begun to appear"-
78. These methods have generally been two -dimensional in which case the model
described by equation (6) reduces to the classical Helmholtz equation in the field
component perpendicular to the imaging plane:

V2Ez + k2Ez = 0 (7)
where the subscript z designates this direction. As with model based imaging for EIT,
schemes which repetitively solve (7) to estimate the electrical properties embodied in the

complex -valued wavenumbers, k2, appear to hold the most promise as image
reconstruction approaches for active microwave imaging as well. These methods also
use parameter estimation methods to find the electrical property profile which optimizes
the data -model match between computed and measured field distributions. As with EIT,
least squares objectives are typically used as the optimization criterion73'75'77 7s

Commonly, computational strategies such as method of moments and finite elements
have been used to discretize (7). Property estimation based on iteratively minimizing the
squared error between computed and measured electric fields require computation of the
derivatives of the solution to (7) with respect to each property parameter. Analogously to

EIT, basis function expansion of k2 as
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N
k2 = Ek2p2

2=1

allows convenient differentiation of (7) with respect to each successive term in the sum
yielding

a2 [v2 Ez + k2EZ, =
v2 aE2

+ k2EZ + k2
aE2

= 0 (8)
aka aka act

which can be rewritten as

V2 + k2 E' = -14 Ez where E' = a 2 (9)

Equation (8) is identical to (7) except for the inhomogeneous term on the right hand side
which can be viewed as the known source for each derivative calculation since (8) is
computed for the current estimate of the electrical properties after the field equation (6)
has already been solved. Again, the electrical properties are a nonlinear function of the
external field values requiring iterative solution techniques involving the sensitivity
matrix. The options which are available included both random processes79.8' as well as
deterministic techniques76-78 as described above for EIT.

While further advancement is clearly needed, these model based approaches
have laid a conceptual foundation for active microwave image reconstruction upon which
microwave imaging can be soundly developed and elevated in vivo. They afford two
significant advantages. First, unlike their predecessors, they are fundamentally unlimited
by wavelength and contrast considerations because they are essentially near -field imaging
techniques which are not constrained by conventional far -field diffraction -limit
arguments, but rather are ultimately limited by signal -to- noise. This leads to the second
advantage that lower frequencies can be utilized with these types of algorithms without
severe degradation in resolution. Early estimates of optimal operating frequency for
microwave imaging were driven by the diffraction limit which led to the need to design
hardware systems functioning at 2 -4 GHz. With the newer class of model -based image
reconstruction algorithm, lower frequencies (below 500 MHz) can be used which reduce
system dynamic range requirements and increase tissue depths that can be imaged
without unduly compromising spatial resolution. Clearly, tradeoffs between wavelength
dependent spatial resolution and imaging depth still exist, but the impact is diminished by
these algorithms which offer operating points that can provide centimeter -scale spatial
resolution over tissue regions on the order of cross -sectional body dimensions.

Unfortunately, these reconstruction methods are not without some drawbacks.
They are computationally intensive with costs that escalate significantly with frequency.
They have been studied to much greater extent in theory and have not been thoroughly
characterized in the laboratory setting. They require information from complex data
acquisition hardware that demands well designed circuitry and calibration which (i)
eliminate stray radiation and cross -coupling between neighboring transmit /receive
elements and (ii) provide high precision measurement of field amplitude and phase.

6. Historical Perspective

The proposition for using active microwave imaging for noninvasive thermal
sensing began in earnest in the early 1980559' 63 "64'69 when Bolomey and colleagues started
developing a microwave camera. They envisioned a single microwave source, such as a
horn antenna, transmitting GHz range signals received by an array of 32 small dipoles
where a modulated scattering technique was used to extract the measured signal from
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acquisition hardware that demands well designed circuitry and calibration which (i) 
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The proposition for using active microwave imaging for noninvasive thermal 
sensing began in earnest in the early 1980s59’63'64,69 when Bolomey and colleagues started 
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horn antenna, transmitting GHz range signals received by an array of 32 small dipoles 
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each dipole. In a thermal imaging experiment involving the heating of a 2 cm tube of
water located in the middle of a 13 cm span from transmitter to receiver, the temperature
was elevated in the tube from 25 °C to 45 °C. Difference images were shown where
temperature rise appeared as bright spots in the image. Spatial resolution was estimated
to be 6 mm and temperature sensitivity to be less than 1°C. In parallel, theoretical work
was going on trying to adapt the algorithms of CT scanning to the microwave case63 -64

These approaches were natural at the time due to the fact that the algorithms were readily
available and the computational costs tractable; however, they were fundamentally
inadequate65. By 1986, there were several groups developing prototype microwave
imaging systems and image recovery methodology61. For example, Larsen and Jacobi
showed82 some rather impressive microwave images of an ex -vivo kidney. Their
microwave system consisted of a single pair of water -loaded transmitting and receiving
antennas scanned in tandem through a water coupling medium. The image was formed
from a 64 x 64 array of sampling positions spaced 1.4 mm apart where the insertion loss
and phase shift was recorded at each point in the grid for a 3.9 GHz illumination signal.
The scanning system provided both vertical and horizontal translation about the specimen
to be imaged. Copolarized and cross -polarized data was recorded with the transmitting
antenna always vertically polarized but the receiving antenna alternately polarized in the
vertical and horizontal directions. Digital image processing of the measured data, for
example, to interpolate it onto a 256 x 256 grid from the 64 x 64 measurement pattern
using a cubic spline was involved but no formalized image reconstruction was performed.
They found that their microwave images could sense internal kidney structural
differences including the cortex, medulla and pelvis. Back projection methods were used
to produce the images from the raw data collected by sensors scanned in a linear fashion.

More advanced systems were reported in the early 1990s with the annulus of
waveguides reported by Jofre et. aí.66. This scanner consisted of 64 elements in a circular
array forming a 20 cm diameter. These radiating elements were electronically scanned,
alternately as sources and receivers, to produce a complete set of response observations
about the target zone. The system exploited a water coupling bolus. Several interesting
results related to blood flow /volume and temperature elevation were shown. For example,
a 3 cm diameter tube of heated water was placed off -set in a water tank and experiments
were performed to estimate the temperature sensitivity of the system at 0.5 °C.

A number of simulation studies investigating the ,potential of active microwave
imaging for thermal sensing have also been conducted 4,83 -89 One such series of
numerical experiments used an 8 cm circle region of water held at 37 °C immersed in a 30
cm circle of background medium at 25 °C. A localized temperature change inside the
body was simulated by a 2 cm nonconcentric cylinder heated to 38 °C or 41 °C. Other
experiments involved a model of the human pelvis and thorax83. Here, frequencies under
study included 434 MHz, 700 MHz and 915 MHz where 64 antennas were evenly
distributed on a 60 cm diameter array. Multiple heated zones having an increase in
temperature of 1 °C, 3 °C and 5 °C were considered in each body cross -section. In the case
of the thorax, six heated zones showed that a 1°C rise was visible, although difficult to
discriminate from other areas of increase within the image which were not heated and no
quantitative assessments were provided.

A different strategy for microwave thermal imaging was adopted by Miyakawa
in the early 1990s65,85 -86 This scheme utilized a chirp pulse signal between 1 -2 GHz to
estimate temperature changes noninvasively. Transmitted signals were detected by a
receiving array on the opposite side of the object where the beat signal between the
incident and transmitted fields was produced by mixing. Only signal traveling along a
straight path from transmitter to receiver was detected through spectral analysis of the
beat signal which rejected the multipath components thereby allowing an image to be
reconstructed easily using conventional x -ray CT algorithms. To estimate the spatial
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beat signal which rejected the multipath components thereby allowing an image to be 
reconstructed easily using conventional x-ray CT algorithms. To estimate the spatial
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resolution of the method, two 5.5 cm plastic cylinders filled with 0.2% saline were
separated by distances of 3 cm, 1.5 cm, 1.0 cm and 0.5 cm. Based on these experiments,
the spatial resolution was estimated to be 1.0 cm. Temperature studies were conducted in
a phantom having three plastic cylinders filled with water which were heated 5 °C above
the background (0.4% saline solution), held at the background temperature and cooled
to 5 °C below the background. These temperature changes were found to be evident in the
recovered images. Based on hardware signal -to -noise estimates, it was concluded that a
temperature change of less than 3.3 °C would be detactable.

In a series of papers reported by Meaney and colleagues, a system of monople
antennas have been used to transmit and receive electric fields over the 300 -900 MHz
range for the purpose of active microwave imaging87"91. In this work both manually
scanned single transmitter /receiver pair and multi -element fixed array hardware have
been investigated. Single and multi- target phantom experiments have demonstrated that
simultaneous absolute permittivity and conductivity images can be recovered which are
quantitatively accurate with respect to the electrical properties87-88. Critical to this
success has been the deployment of model -based image reconstruction techniques that
account for the full near -field electromagnetic interactions which occur in tissue78. An
extensive series of thermal imaging experiments have also been reported92 in both
simulated and laboratory systems. In numerical simulation, a precision of 0.02 °C and an
accuracy of 0.37 °C has been found with the model -based approach. In the laboratory
using a phantom consisting of a single- heated zone, temperature precision and accuracies
have been 0.98 °C and 0.56 °C under selected circumstances. Results from the experience
will be highlighted in subsequent sections of this review.

Other important active microwave imaging results have also been recently
reported93'94 For example, a tomographic system consisting of 32 transmitters and 32
receivers, electronically scanned around a 36 cm cylindrical microwave chamber has
been reported by Semenov and coworkers93. This system operates at 2.45 GHz, uses an
incident electromagnetic field polarized linearly in the vertical direction relative to the
imaging plane, and acquires all of the necessary data in less than 0.5 seconds.
Experimental results from the system have suggested a spatial resolution of 1 -2 cm and a
contrast resolution of 5 %. This same group has also developed iterative reconstruction
algorithms76 that have been evaluated with synthetic data.

Progress also continues to be reported by the Bolomey team93'75. Importantly,
they have demonstrated quantitative reconstructions from experimental, multiview near -
field data obtained with their planar 2.45 GHz active microwave camera. Iterative
reconstruction using model -based optimization has been used where the method of
moments serves as the computational engine. Test objects included contrasts of 0.8%
and 40% and 3% and 150% in permittivity and conductivity, respectively, where either
15 or 30 views were used. Related studies involving the microwave scanner described by
Jofre have also appeared.

7. Illustrative Results

7.1 Hardware System Design

In this section the hardware data acquisition of Meaney et. al.87 -9° is briefly
summarized as representative of a state -of -the -art system. The design is constructed
around a 32 channel transceiving network which operates over the spectral range of 300
-900 MHz. It exploits a single side -band heterodyne approach87 where the continuous
wave reference signal is modulated with an intermediate frequency (IF) using a single
side -band, carrier -suppressed upconverter. The received modulated signal is then
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compared with the reference through a single mixer. The resulting IF was initially read
by a commercial grade lock -in amplifier which extracted the in -phase and quadrature
components and performed the A/D conversion. Later versions of the system eliminated
the external lock -in amplifier in favor of direct A/D board sampling coupled to a software
implementation of phase sensitive detection. This advance not only consolidated system
components into the controlling PC but also significantly sped-up data acquisition. A
complete set of imaging data involving 32 transmitter positions can be collected in under
5 seconds. High performance measurement precision is also maintained through a signal
dynamic range of 130 dB. Figure 15 show recent photographs of this system. The
microwave circuitry associated with the switching matrix can be seen along with
connections to an antenna imaging array.

,-0z

Figure 15: Photographs of the 32 channel data acquisition system developed by Meaney

The transmitting and receiving elements are simple monopole antenna designs
which were constructed by simply exposing a quarter- wavelength (in the medium of
interest at 500 MHz) of the center conductor (physical length of 2.5 cm) of a semi -rigid
coaxial cable. While this type of antenna is notorious for exciting currents along the
outside of the coaxial cable in a low -loss environment such as air, the high attenuation of
the coupling saline solution significantly dampens this effect to the extent that the
antenna return loss is quite smooth over the broad bandwidth of 300 -900 MHz. The
monopole transceiving array provides the physical advantage of eliminating more bulky
elements such as waveguides or patch antennas in favor of a single type of simple
antenna component which is conducive to a fixed array data acquisition design that may
become important in realizing clinically viable systems. Figure 16 illustrates a typical 32
antenna array of monopole elements distributed on a 26 cm radius.

Figure 16: Fixed -position, 32 element monopole
antenna array

A number of operational issues
surround the use of a monopole transceiving
design within the context of near -field imaging
and the performance of such a system vis -à -vis
other approaches needs to be investigated. In
particular, the level of data -model match which
can be achieved with computational solutions
that form the basis for image reconstruction
with the monopole system must be studied. In
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addition, the extent to which the isotropic radiation pattern of the monopole element
influences reconstructed image quality must be understood. Meaney and colleagues89
recently explored these issues by comparing monopole and waveguide imaging systems.

They found a new calibration method that leads to improvements which are
independent of the type of radiator used. Specifically, data -model match was found to
increase by 0.4 dB in magnitude and 4° in phase for monopoles and by 0.6 dB in
magnitude and 7° in phase for waveguides (on average) on a per measurement basis when
the new calibration procedure was employed. Enhancements were also found in the
reconstructed images obtained with the monopole system relative to waveguides.
Improvements were observed in (1) the recovered object shape, (2) the uniformity of the
background, (3) the sharpness of edge detection, and (4) the accuracy of the target
property value recovered. Analyses of reconstructed images also suggested that there
was a systematic decrease of approximately 10% in the reconstruction errors for the
monopole system over its waveguide counterpart in single- target experiments and as
much as a 20% decrease in multi- target cases. Results indicate that these enhancements
stem from a better data -model match for the monopoles relative to waveguides which is
consistent across the type of calibration procedure used. Comparisons of computations
and measurements showed an average improvement in data -model match of
approximately 0.25 dB in magnitude and near 7° in phase in favor of the monopoles in
this regard. Beyond these apparent imaging performance enhancements, the monopole
system offers economy -of -space and low construction -cost considerations along with
computational advantages which make it a good choice as a transceiving element around
which to construct a clinically viable, near -field microwave imaging system. Figure 17
shows sample reconstructed images for a 4.3 cm diameter bone /fat equivalent cylinder
separated by 1.4 cm from a 3.8 cm diameter plexiglas cylinder filled with 0.3% NaCI
agar gel where both monopole and waveguide systems have been used. Included in the
results are longitudinal transects through images displaying the reconstructed property
profiles. These transects make it clear that the monopole images are better.
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Figure 17: Reconstructed monopole (left pair) and waveguide (right pair) images of a two -target
distribution with transect plots illustrating the exact and recovered property profile.
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Another important aspect of microwave imaging hardware is that fixed array
systems with multi -sensor data acquisition can suffer from nonactive antenna element
interactions which cause distortions in the measurements. To address this problem
Paulsen and Meaney95 have developed a nonactive antenna compensation scheme which
can be incorporated into model -based near -field microwave image reconstruction
methods. The approach treats the nonactive members of the antenna array as impedance
boundary conditions applied over a cylindrical surface of finite radius providing two
parameters, the effective antenna radius and impedance factor, which can be determined
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Figure 17: Reconstructed monopole (left pair) and waveguide (right pair) images of a two-target 
distribution with transect plots illustrating the exact and recovered property profile.

Another important aspect of microwave imaging hardware is that fixed array 
systems with multi-sensor data acquisition can suffer from nonactive antenna element 
interactions which cause distortions in the measurements. To address this problem 
Paulsen and Meaney95 have developed a nonactive antenna compensation scheme which 
can be incorporated into model-based near-field microwave image reconstruction 
methods. The approach treats the nonactive members of the antenna array as impedance 
boundary conditions applied over a cylindrical surface of finite radius providing two 
parameters, the effective antenna radius and impedance factor, which can be determined
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empirically from measured data. Results show that the effective radius and impedance
factor yield improved fits to experimental data in homogeneous phantoms where
measurements were obtained with and without the presence of the nonactive antenna
elements. Once deduced, these parameters are incorporated into the nonactive antenna
compensation model and lead to systematic data -model match improvements in
heterogeneous phantoms.

While the improvements afforded by the nonactive antenna model are small on a
per measurement basis, they are not significant. As demonstrated by Meaney et. al.91
incorporation of the nonactive antenna compensation model produces significantly higher
quality image reconstructions from measurements obtained with a fixed array data
acquisition system over the spectral range of 500 -900 MHz. Improvements were found
to be most dramatic for inclusions located in near proximity to the antenna array, itself,
although cases of improvement in the recovery of centered heterogeneities were also
evident. Increases in the frequency of illumination yielded an increased need for
nonactive antenna compensation. Quantitative measures of recovered inclusion shape
and position revealed a systematic improvement in image reconstruction quality when the
nonactive antenna compensation model was employed. Improvements in electrical
property value recovery of localized heterogeneities were also observed. Figure 18
shows reconstructed images at 900 MHz of a centered and offset bone /fat equivalent
inclusion with and without the nonactive antenna compensation model. In this case there
is a clear improvement in both the near -edge target shape as well as its shape and size
when located in the central portion of the image zone.
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Figure 18: Images reconstructed with no compensation (top row) vs. compensation (bottom row)
for centered and offset single bone /fat targets illuminated at 900 MHz.

7.2 Static Phantom Studies

This section focuses on representative experiments in terms of both static target
imaging. Clearly, prior to investigating the more complex problem of thermal imaging, it
is important to establish the degree to which quantitative, spatially -resolved electrical
property images can be obtained since these form the foundation from which thermal
estimation takes place. Figure 19 illustrates a typical image pair of a 4.3 cm bone /fat
target and a 2.5 cm bone /fat target separated by 1.7 cm. The reconstruction has been
obtained from laboratory data collected at 700 MHz. The images are of high quality,
resolving the targets in both electrical property quantities. Most importantly, as shown
by the transects through the images, the recovered property values for the background
and target regions are quantitative. Figure 20 shows a related three target case where a
3.8 cm plexiglas cylinder of deionized water, a 4.3 cm bone /fat cylinder and a 2.5 cm
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property value recovery of localized heterogeneities were also observed. Figure 18 
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for centered and offset single bone/fat targets illuminated at 900 MHz.

7.2 Static Phantom Studies

This section focuses on representative experiments in terms of both static target 
imaging. Clearly, prior to investigating the more complex problem of thermal imaging, it 
is important to establish the degree to which quantitative, spatially-resolved electrical 
property images can be obtained since these form the foundation from which thermal 
estimation takes place. Figure 19 illustrates a typical image pair of a 4.3 cm bone/fat 
target and a 2.5 cm bone/fat target separated by 1.7 cm. The reconstruction has been 
obtained from laboratory data collected at 700 MHz. The images are of high quality, 
resolving the targets in both electrical property quantities. Most importantly, as shown 
by the transects through the images, the recovered property values for the background 
and target regions are quantitative. Figure 20 shows a related three target case where a 
3.8 cm plexiglas cylinder of deionized water, a 4.3 cm bone/fat cylinder and a 2.5 cm
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bone /fat cylinder are located in a clockwise order beginning at 10 o'clock. All of these
objects have been placed in a muscle -like background region illuminated at 700 MHz.
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Figure 19: Reconstructed images at 700 MHz of the k2 distribution of 4.3 cm (left object) and 2.5
cm (right object) fat/bone equivalent cylinders separated by 1.7 cm. Exact and reconstructed
electrical property profiles along transects through the images also shown.

Figure 20: Exact (left pair) and reconstructed (right pair) images of a three target configuration
illustrating low and high contrast materials in the real (left) and imaginary (right) components of
the electrical property distribution.

The thin plexiglas ring is readily visible in the real part of the image (left side)
water) and

high (imaginary part of bone /fat) contrasts with the muscle -equivalent saline background.
It is very encouraging to find that the presence of the plexiglas ring appears in the image
as well as the fact that the material inside the plexiglas cylinder has essentially no
contrast with the surrounding medium in the real part (left) of the image, but high
contrast in the imaginary component (right) of the image. The wall thickness and large
contrast (37:1 in the real part and 100:1 in the imaginary part) make it difficult to recover
the material properties of the plastic exactly; however, the general shape and location of
the wall are discernible and its lower electrical properties are evident. The recovered ring
is more pronounced in the real part of the image due to the lower contrast level of the
plastic with materials both inside and outside of the cylinder (compared to imaginary).

7.3 Thermal Imaging Experiments

A variety of thermal imaging experiments involving a controlled heated zone
where changes in electrical properties have been monitored during the heating process are
reported in Chang et. aí.92. Example results presented here are intended to illustrate that
microwave imaging can dynamically monitor the small changes in electrical properties
which are related to local temperature elevation. An extensive series of simulation
studies have been conducted in order to define and evaluate the parameters which
determine best -case thermal imaging performance. Specifically, the baseline contrast of
the target zone to be heated has been varied between 0.3% and 1.2% NaCI relative to a
0.9% NaC1 background prior to heating over a range of temperature spanning 25 °C -45 °C.
Values of reconstructed electrical conductivity have been mapped to temperature using
measured data for the electrical properties of the target saline at each of the imaged
temperature levels. Image reconstructions have been obtained for illumination
frequencies of 300, 500, 700 and 900 MHz. Figure 21 illustrates a typical result from this
effort for the 1.2% NaCI initial concentration contrast at 700 MHz. Transects through the
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bone/fat cylinder are located in a clockwise order beginning at 10 o'clock. All of these 
objects have been placed in a muscle-like background region illuminated at 700 MHz.
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Figure 19: Reconstructed images at 700 MHz of the k1 distribution of 4.3 cm (left object) and 2.5
cm (right object) fat/bone equivalent cylinders separated by 1.7 cm. Exact and reconstructed 
electrical property profiles along transects through the images also shown.
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Figure 20: Exact (left pair) and reconstructed (right pair) images of a three target configuration 
illustrating low and high contrast materials in the real (left) and imaginary (right) components of 
the electrical property distribution.

The thin plexiglas ring is readily visible in the real part of the image (left side) 
along with the other targets and their respective low (real part of deionized water) and 
high (imaginary part of bone/fat) contrasts with the muscle-equivalent saline background. 
It is very encouraging to find that the presence of the plexiglas ring appears in the image 
as well as the fact that the material inside the plexiglas cylinder has essentially no 
contrast with the surrounding medium in the real part (left) of the image, but high 
contrast in the imaginary component (right) of the image. The wall thickness and large 
contrast (37:1 in the real part and 100:1 in the imaginary part) make it difficult to recover 
the material properties of the plastic exactly; however, the general shape and location of 
the wall are discernible and its lower electrical properties are evident. The recovered ring 
is more pronounced in the real part of the image due to the lower contrast level of the 
plastic with materials both inside and outside of the cylinder (compared to imaginary).

7.3 Thermal Imaging Experiments

A variety of thermal imaging experiments involving a controlled heated zone 
where changes in electrical properties have been monitored during the heating process are 
reported in Chang et. al.92. Example results presented here are intended to illustrate that 
microwave imaging can dynamically monitor the small changes in electrical properties 
which are related to local temperature elevation. An extensive series of simulation 
studies have been conducted in order to define and evaluate the parameters which 
determine best-case thermal imaging performance. Specifically, the baseline contrast of 
the target zone to be heated has been varied between 0.3% and 1.2% NaCl relative to a
0.9% NaCl background prior to heating over a range of temperature spanning 25°C-45°C. 
Values of reconstructed electrical conductivity have been mapped to temperature using 
measured data for the electrical properties of the target saline at each of the imaged 
temperature levels. Image reconstructions have been obtained for illumination 
frequencies of 300, 500, 700 and 900 MHz. Figure 21 illustrates a typical result from this 
effort for the 1.2% NaCl initial concentration contrast at 700 MHz. Transects through the
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Figure 21 images show the quantitative nature of the electrical property recovery relative
to exact values as a function of temperature rise.
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Figure 21: Thermal imaging simulations illustrating the change in electrical properties in a central
heated zone. Transects through the imaging domain show profiles of exact (dotted line) and
reconstructed (solid line) property values.

Linear fits to both measured and simulated data relating electrical conductivity
(imaginary component of the recovered image) to temperature have been obtained for the
three target saline concentrations. Precision in this data has been estimated by evaluating
the average deviation of the data points from the best -fit line in each case. Accuracy has
also been estimated in a similar fashion by determining the averaged error between the
measured and reconstructed values using the center point of the target zone over the full
temperature range of 25° C -42 °C. The results are encouraging and show that the average
precision over the three saline concentrations is approximately 0.1 °C -0.2 °C whereas the
corresponding average temperature imaging accuracy is 0.6° C- 0.7 °C. A similar series of
experiments have also been conducted in the laboratory where initial saline concentration
contrast between the heated zone and the background has been varied and the frequency
of data acquisition has ranged from 300 -900 MHz. Figure 22 presents an interesting case
where the heated zone is a 5 cm diameter carbon -doped PEMA cylinder with 0.4 mm
wall thickness which has been placed adjacent to an unheated 2.5 cm bone /fat object.
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Figure 22: Thermal images from laboratory experiments where a thin -walled carbon -doped PEMA
cylinder containing 0.3 % NaCI is heated while positioned next to an unheated fat/bone target
embedded in a muscle -equivalent saline background. Sequences of absolute (top row) and
difference (bottom row) images are shown. A clear progression of electrical property increase is
observed inside the PEMA cylinder where the saline concentration is heated.

The carbon -doped PEMA cylinder has higher electrical properties than the 0.9% saline
background region. The top row of images presents the absolute reconstructions of the
imaginary component of the electrical properties for increasing temperatures of the 0.3%
saline inside the PEMA shell. The unheated bone /fat target, the heated saline, the PEMA
shell and the unheated saline background are all apparent in these images. The bottom
row of images shows differences taken at each elevated temperature with the 20 °C
baseline. In the difference images, the bone /fat object along with the carbon -doped
PEMA shell disappears since their temperatures do not increase. Analysis of the
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Linear fits to both measured and simulated data relating electrical conductivity 
(imaginary component of the recovered image) to temperature have been obtained for the 
three target saline concentrations. Precision in this data has been estimated by evaluating 
the average deviation of the data points from the best-fit line in each case. Accuracy has 
also been estimated in a similar fashion by determining the averaged error between the 
measured and reconstructed values using the center point of the target zone over the full 
temperature range of 25° C-42°C. The results are encouraging and show that the average 
precision over the three saline concentrations is approximately 0.1°C-0.2°C whereas the 
corresponding average temperature imaging accuracy is 0.6° C-0.7°C. A similar series of 
experiments have also been conducted in the laboratory where initial saline concentration 
contrast between the heated zone and the background has been varied and the frequency 
of data acquisition has ranged from 300-900 MHz. Figure 22 presents an interesting case 
where the heated zone is a 5 cm diameter carbon-doped PEMA cylinder with 0.4 mm 
wall thickness which has been placed adjacent to an unheated 2.5 cm bone/fat object.
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Figure 22: Thermal images from laboratory experiments where a thin-walled carbon-doped PEMA 
cylinder containing 0.3 % NaCi is heated while positioned next to an unheated fat/bone target 
embedded in a muscle-equivalent saline background. Sequences of absolute (top row) and 
difference (bottom row) images are shown. A clear progression of electrical property increase is 
observed inside the PEMA cylinder where the saline concentration is heated.

The carbon-doped PEMA cylinder has higher electrical properties than the 0.9% saline 
background region. The top row of images presents the absolute reconstructions of the 
imaginary component of the electrical properties for increasing temperatures of the 0.3% 
saline inside the PEMA shell. The unheated bone/fat target, the heated saline, the PEMA 
shell and the unheated saline background are all apparent in these images. The bottom 
row of images shows differences taken at each elevated temperature with the 20°C 
baseline. In the difference images, the bone/fat object along with the carbon-doped 
PEMA shell disappears since their temperatures do not increase. Analysis of the
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precision and accuracy of this and other thermal imaging experiments performed in the
laboratory are reported in Chang et. aí.92. The results show that a best case temperature
precision of 0.98 °C and accuracy of 0.56 °C can be achieved in the laboratory. The
precision and accuracy averaged over the full range of frequencies and electrical property
contrasts that have been considered suggests values of 2 °C and 1.4 °C, respectively, for
the current microwave imaging system realization.

The potential benefits of including apriori structural information in the thermal
image reconstruction process has also been explored as this information could become
available in the context of therapy monitoring and assessment when high resolution
preprocedure imaging is already part of standard practice. The series of reconstructed
images in Figure 23 shows the improvement in thermal accuracy gained by providing
apriori information to the image reconstruction. Using the 32 channel acquisition system
of Meaney et. aí.90 with a 24 cm diameter imaging region, a two -target phantom was
illuminated at 500 MHz where a 4.3 cm diameter bone /fat object was placed
approximately 6 cm to the left of the center and a second 5 cm diameter 0.9% saline
heated zone was located 4 cm to the right of center. These targets were immersed in a
saline tank filled with 0.6% saline. The thermal phantom was heated from 25 °C to 45 °C.
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Figure 23: Real (left) and Imaginary (right) component difference of the reconstructed images
between the heated and the baseline frames for localized heated and nonheated zones with and
without the use of a priori information.

The results in Figure 23 are differences between the heated target and the
baseline images for both the real and imaginary components of the electrical property
distribution. Nonheated regions should have zero difference while heated regions should
have blue shading in the real and red shading in the imaginary property components
corresponding to the negative and positive temperature coefficients of these quantities.
The first image set contains no apriori information. The real component images possess
some increasingly red -colored regions which is artifact. The imaginary component
images qualitatively reconstruct the effect of heating; however, the quantitative accuracy
of the thermal reconstruction is poor. This is confirmed in Figure 24 where the
reconstructed values are poorly -fitted to the expected temperature behavior.

The second image set contains apriori data on the heated target location and its
dielectric properties can be approximated. There is considerable improvement both in
terms of qualitatively interpreting the images as well as quantitatively evaluating them.
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Figure 23: Real (left) and Imaginary (right) component difference of the reconstructed images 
between the heated and the baseline frames for localized heated and nonheated zones with and 
without the use of a priori information.

The results in Figure 23 are differences between the heated target and the 
baseline images for both the real and imaginary components of the electrical property 
distribution. Nonheated regions should have zero difference while heated regions should 
have blue shading in the real and red shading in the imaginary property components 
corresponding to the negative and positive temperature coefficients of these quantities. 
The first image set contains no apriori information. The real component images possess 
some increasingly red-colored regions which is artifact. The imaginary component 
images qualitatively reconstruct the effect of heating; however, the quantitative accuracy 
of the thermal reconstruction is poor. This is confirmed in Figure 24 where the 
reconstructed values are poorly-fitted to the expected temperature behavior.

The second image set contains apriori data on the heated target location and its 
dielectric properties can be approximated. There is considerable improvement both in 
terms of qualitatively interpreting the images as well as quantitatively evaluating them.
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Specifically, the heated target zone is much better defined in the imaginary image
component, although the images still suggest some heating of the bone /fat object which
does not occur physically. The final image set shows further improvements in the
reconstructions by providing additional apriori information regarding the location and the
approximate dielectric properties of the bone /fat object as well. Now, the bone /fat target
does not appear to undergo a temperature rise, in fact, it remains visible in the image
because the background saline temperature is shown to elevate slightly. Temperature
measurements in the saline confirm that this is the case due to thermal conduction from
the heated zone over time. The quantitative temperature estimates for both examples
where apriori information is supplied show the significant improvement in the peak value
and zone -averaged electrical properties of the heated region as a function of temperature.
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Figure 24: Thermal accuracy of reconstructed images with and without a priori information. Solid
line is expected temperature behavior. Open circles are reconstructed temperature value sampled at
the center of the heated region. X's are the average reconstructed temperature value sampled over
half the area of the heated region.

A number of thermal imaging experiments using an ex -vivo kidney model have
also been completed and representative results from this experience are briefly described
here. The temperature distributions that develop in this model are complex and require
further investigation. An excised fixed porcine kidney has been used in these preliminary
thermal evaluations. The kidney was perfused with an externally heated 0.9% saline
solution. Temperature and fluid flow rate were controlled by an external circulator.
Figure 25 shows a 900 MHz difference image of the imaginary component property
distribution for the kidney perfused at 20 °C and 25 °C. The kidney was 12 cm in length
and approximately 4 cm thick, being positioned lengthwise within the imaging plane.
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Figure 25: Difference images of an ex -vivo porcine kidney perfused with heated saline: 900 MHz
difference image (1st image on left) for kidney perfused at 25 °C and 20 °C. Series of 700 MHz
difference images (2nd through 6th images) over time for increasing temperature of the perfusate.

The outline of the kidney is clearly distinct. Further, the bright central region indicating
temperature elevation is where the renal artery was located. Also presented in Figure 25
is a series of 700 MHz difference images of the imaginary component property
distribution for the kidney perfused over much longer time periods at higher temperatures
of the perfusate. There is a clear progression in the spatial distribution of temperature
rise. These results are encouraging from the perspective of imaging a complicated organ
structure which produces a complex thermal distribution that evolves over time.
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Specifically, the heated target zone is much better defined in the imaginary image 
component, although the images still suggest some heating of the bone/fat object which 
does not occur physically. The final image set shows further improvements in the 
reconstructions by providing additional apriori information regarding the location and the 
approximate dielectric properties of the bone/fat object as well. Now, the bone/fat target 
does not appear to undergo a temperature rise, in fact, it remains visible in the image 
because the background saline temperature is shown to elevate slightly. Temperature 
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Figure 24: Thermal accuracy of reconstructed images with and without a priori information. Solid 
line is expected temperature behavior. Open circles are reconstructed temperature value sampled at 
the center of the heated region. X's are the average reconstructed temperature value sampled over 
half the area of the heated region.

A number of thermal imaging experiments using an ex-vivo kidney model have 
also been completed and representative results from this experience are briefly described 
here. The temperature distributions that develop in this model are complex and require 
further investigation. An excised fixed porcine kidney has been used in these preliminary 
thermal evaluations. The kidney was perfused with an externally heated 0.9% saline 
solution. Temperature and fluid flow rate were controlled by an external circulator. 
Figure 25 shows a 900 MHz difference image of the imaginary component property 
distribution for the kidney perfused at 20°C and 25°C. The kidney was 12 cm in length 
and approximately 4 cm thick, being positioned lengthwise within the imaging plane.

Figure 25: Difference images of an ex-vivo porcine kidney perfused with heated saline: 900 MHz 
difference image (1st image on left) for kidney perfused at 25'C and 20"C. Series of 700 MHz 
difference images (2nd through 6th images) over time for increasing temperature of the perfusate.
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The outline of the kidney is clearly distinct. Further, the bright central region indicating 
temperature elevation is where the renal artery was located. Also presented in Figure 25 
is a series of 700 MHz difference images of the imaginary component property 
distribution for the kidney perfused over much longer time periods at higher temperatures 
of the perfusate. There is a clear progression in the spatial distribution of temperature 
rise. These results are encouraging from the perspective of imaging a complicated organ 
structure which produces a complex thermal distribution that evolves over time.
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7.4 In Vivo Imaging

As a final example, a series of preliminary in vivo images are shown where a
human hand /arm has been raised and lowered within the imaging array. Figure 26 shows
reconstructed images and accompanying photographs of different hand positions
illuminated at 300 MHz. The top image on the left corresponds to the case where the
fingers remain in contact with each other while the thumb is separated by a glass beaker
as illustrated in the photograph. The finger group and the isolated thumb are evident in
the reconstructed images. In the bottom image, the hand is cupped, but with the fingers
pointed in the upward direction. The fingers and palm, along with the intervening saline
solution which occupies the cupped portion of the palm, can be located in the image. The
second image series in Figure 26 depicts reconstructions of the hand from another set of
in vivo experiments using the 32 channel system to acquire measured data over a 24 cm
cross -section at 700 MHz. In this case, the length of the hand is positioned parallel to the
imaging plane and is moved into this cross -section from below where the imaging plane
transects the wrist (upper left image in the series). The progression of images clearly
shows the emergence of the palm and the extension of the fingers (bottom right image in
the series). The images in Figure 26 are intriguing because they show identifiable
features within the hand, wrist and arm areas as the anatomy is raised and lowered
through the antenna plane. Further, these images were obtained without any special
processing or calibration of the measured data relative to the procedures which are in
place for phantom imaging. In this sense, the results in Figure 24 are quite encouraging.
Significant improvements are needed, but these can be expected to occur as more
experience is gained with in vivo microwave imaging.

Figure 26: In vivo images of a human hand illuminated at 300 MHz (left) as it is raised and lowered
within the 14cm diameter 16 antenna imaging array. Arrows point to the anatomical locations of
features found within the imaging planes. 700 MHz set of images (right) obtained in the 26 cm
diameter 32 antenna imaging array where the length of the hand is parallel to the imaging plane and
is raised into the plane from below.
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Figure 26: In vivo images of a human hand illuminated at 300 MHz (left) as it is raised and lowered 
within the 14cm diameter 16 antenna imaging array. Arrows point to the anatomical locations of 
features found within the imaging planes. 700 MHz set of images (right) obtained in the 26 cm 
diameter 32 antenna imaging array where the length of the hand is parallel to the imaging plane and 
is raised into the plane from below.
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