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ABSTRACT 

Rock mass fractures are one of the main factors leading to slope instability, and the detection of rock mass fractures can 

predict slope instability to a certain extent. The rapid development of deep learning has provided a low-cost and efficient 

method for the detection of rock mass fractures. This paper employs the DenseNet121 model and the InceptionV2 model 

for the detection of rock mass fractures, and improves the models by incorporating an attention mechanism. The dataset 

consists of rock masses with fractures from various regions to enhance the model’s applicability in different scenarios. 

Experiments have revealed that the InceptionV2 family of models exhibits overall better performance than the 

DenseNet121 family of models. Among them, the InceptionV2-ECA model performs the best with an F1 score of 0.9850 

and an accuracy rate of 98.73%. Compared to the original InceptionV2 model, the accuracy rate has increased by 9.57%. 
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1. INTRODUCTION 

Slope disasters occurring worldwide constantly threaten people’s property and safety, and the demand for underground 

engineering and geological disaster prevention is continuously increasing1. The prevention of slope disasters is a critical 

issue in the fields of underground engineering and geological disaster prevention. Slope instability and landslides pose 

threats not only to personal and property safety but also have significant socio-economic impacts. Rock fractures are one 

of the primary factors causing slope instability. With the rapid development of infrastructure in China, including 

highways, railways, and urban construction, extensive tunnel excavations and mountain road projects are underway2. 

These engineering activities alter the natural state of the original rock mass, leading to stress redistribution, which may 

cause the formation and propagation of rock fractures. Additionally, natural factors such as rainfall and earthquakes can 

exacerbate the development of rock fractures, further triggering slope disasters. Therefore, researching rock fracture 

detection technologies is of significant practical importance for preventing slope disasters. Traditional rock fracture 

detection methods primarily rely on manual observation and expert judgment, which are time-consuming and labor-

intensive. These methods are also susceptible to subjective influences, leading to inconsistencies and reduced accuracy in 

detection results. In recent years, with the rapid advancement of computer vision and machine learning technologies, 

automated rock fracture detection methods based on deep learning have gained increasing attention. Deep learning, 

especially convolutional neural network (CNN), has demonstrated exceptional performance in image recognition and 

processing. CNNs automatically extract latent features of images through multi-layer convolution and pooling operations, 

effectively recognizing complex image patterns. Therefore, applying deep learning to rock fracture detection can 

improve detection efficiency and accuracy, reducing human error. Existing research indicates that deep learning models 

can achieve automated detection of rock fractures3-7. For example, Li et al. (2023) proposed an improved YOLOv7 

algorithm based on the SimAM attention mechanism for rock fracture detection, achieving favorable detection results8. 

Ali et al. (2020) proposed using models such as ResNet101 and MobileNetV2 for concrete crack detection, achieving 

significant results9. 

This study aims to develop a general rock fracture detection model based on convolutional neural networks in deep 

learning, utilizing real rock fracture images from various regions for training, to enhance the model’s applicability and 

detection accuracy in different scenarios. Additionally, by incorporating techniques such as data augmentation, the study 
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aims to maintain high detection performance even with limited data availability. Furthermore, this study employs both 

DenseNet121 and InceptionV2 for fracture detection, and through comparative experiments, selects the better-

performing model as the target model. Simultaneously, different attention mechanisms are added to the base models for 

comparative experiments to identify the one that most significantly enhances performance, thereby improving the model. 

The study found that the InceptionV2 series models outperform the DenseNet121 series models overall. Among them, 

the InceptionV2-ECA model exhibits the best performance, while the DenseNet121-SE model shows the worst 

performance. 

2. MODEL INTRODUCTION 

2.1 DenseNet121 model architecture 

DenseNet (Densely Connected Convolutional Network) is a deep learning model primarily used for image classification 

tasks. Through dense connections, this model ensures that the output of each layer is directly inputted to every 

subsequent layer. This facilitates efficient information flow and effective gradient propagation. Not only does this reduce 

the number of parameters in the model, but it also mitigates the issue of vanishing gradients, making the entire training 

process more stable and efficient. DenseNet consists of multiple Dense Blocks and Transition Layers, with each layer 

within a Dense Block interconnected. The DenseBlock also employs a structure of BN (Batch Normalization)+ReLU 

(Rectified Linear Unit)+Conv (Convolution). This design differs from the conventional Conv+BN+ReLU, specifically to 

handle the situation where the input to the convolutional layer includes the output features from all previous layers. Since 

these features come from different layers, their numerical distributions may vary significantly. To address this issue, we 

first pass the input features through a BN (Batch Normalization) layer for standardization before performing the 

convolution operation. Transition Layers are used to connect adjacent Dense Blocks and also to adjust the size and 

number of channels of the feature maps. DenseNet121 is a common variant of the DenseNet model, where 121 denotes 

the total number of convolutional layers and fully connected layers in the model.  

2.2 InceptionV2 model architecture 

Inception, also known as InceptionNet or GoogLeNet, is a deep learning model used for image classification. The core 

component of the model is a convolutional structure called the Inception Module. This structure combines various 

convolutional layers and pooling layers into a single module. The entire model assembles these modules into a complete 

network architecture. The model consists of multiple such modules and includes auxiliary classifiers to aid in gradient 

propagation. InceptionV2 is an improved version of InceptionV1. The main improvement is the introduction of BN 

layers, inserting a Conv-BN-ReLU structure between convolutional layers and activation functions. Additionally, the 

5×5 convolutional kernel in InceptionV1 is replaced with two 3×3 convolutional kernels, increasing depth while 

significantly reducing the number of parameters. The initial layer consists of three convolutional layers and two max-

pooling layers. This is followed by ten layers of Inception Modules, which include two different types of Inception 

Modules, denoted as IM1 and IM2 in the figure. The output layer consists of average pooling and fully connected layers. 

Since the model outputs two classes--images without fractures and images with fractures--the fully connected layer has 

two nodes. 

2.3 Model improvements 

The experiment involved adding different attention mechanisms to two models and selecting the one with better 

performance for model improvement. Attention mechanisms can be seen as intelligent filtering tools that allow the 

model to focus on the most relevant information while ignoring less important details. This enables the model to more 

accurately identify the features of images. Additionally, attention mechanisms can enhance the interpretability of the 

model’s decisions by highlighting the information the model focuses on when making decisions. 

This experiment employed SE (Squeeze-and-Excitation) attention mechanism, CAM (Channel Attention Mechanism), 

SAM (Spatial Attention Mechanism), CBAM (Convolutional Block Attention Module), and ECA (Efficient Channel 

Attention) attention mechanism. In the DenseNet121 model, the attention mechanisms were added after the 

convolutional layers in the Dense Block and Transition Layer. In the InceptionV2 model, the attention mechanisms were 

added after the convolutional layers in each Inception module10-12. 
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3. EXPERIMENTS 

3.1 Data set design 

The training dataset consists of rock mass images from different slope areas, with formats including JPG and PNG, 

totaling 6,689 images. Of these, 3,834 images depict rock masses with cracks, and 2,855 images show rock masses 

without cracks. The training set contains 2,230 images without cracks and 3,195 images with cracks. The test set 

includes 625 images without cracks and 639 images with cracks. 

3.2 Model training 

The model used the Adam optimizer, with the cross-entropy loss function. During training, the initial learning rate (lr) 

was set to 0.01, the batch size (batch_size) to 32, and the number of epochs to 40. By continuously adjusting the 

hyperparameters and observing the changes in the loss function and accuracy over the epochs during training, the best-

performing hyperparameters were determined. The final hyperparameter settings are shown in Table 1. 

Table 1. Over parameter setting. 

Model lr Batch_size Epochs 

DenseNet121 0.000001 12 14 

DenseNet121-SE 0.000001 12 14 

DenseNet121-ECA 0.00001 12 14 

DenseNet121-SAM 0.000001 12 14 

DenseNet121-CAM 0.000001 12 14 

DenseNet121-CBAM 0.000001 12 14 

InceptionV2 0.000001 32 15 

InceptionV2-SE 0.000001 32 15 

InceptionV2-ECA 0.00001 32 15 

InceptionV2-SAM 0.00001 32 15 

InceptionV2-CAM 0.00001 32 15 

InceptionV2-CBAM 0.0001 24 15 

After setting the final hyperparameters, the comparison graphs of the loss values and accuracy over the epochs for the 

DenseNet121 model and its improved model are shown in Figures 1 and 2, respectively. The comparison graphs of the 

loss values and accuracy over the epochs for the InceptionV2 model and its improved model are shown in Figures 3 and 

4, respectively. 

 

Figure 1. Comparison of loss values across models for DenseNet121. 
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Figure 2. Comparison of the accuracy of each model of DenseNet121. 

 

Figure 3. Comparison of loss values across models for InceptionV2. 

 

Figure 4. Comparison of accuracy across models for InceptionV2. 

3.3 Model validation 

After training the model, its performance was evaluated using the test dataset. In this experiment, the performance of the 

trained model was evaluated using four evaluation metrics: F1 score (F1), recall (Rec), precision (Pre), and accuracy 

(Acc). The specific experimental results are shown in Table 2 below. 
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Table 2. Model performance metrics on validation set. 

Model Rec Pre F1 Acc 

DenseNet121 0.98 0.83 0.8988 0.8916 

DenseNet121-SE 1.00 0.81 0.8950 0.8797 

DenseNet121-ECA 1.00 0.87 0.9305 0.9280 

DenseNet121-SAM 0.97 0.90 0.9337 0.9312 

DenseNet121-CAM 0.96 0.91 0.9343 0.9100 

DenseNet121-CBAM 0.85 0.92 0.8836 0.8892 

InceptionV2 0.96 0.92 0.9396 0.9359 

InceptionV2-SE 0.97 0.90 0.9337 0.9359 

InceptionV2-ECA 0.99 0.98 0.9850 0.9873 

InceptionV2-SAM 0.99 0.98 0.9850 0.9858 

InceptionV2-CAM 0.99 0.97 0.9799 0.9771 

InceptionV2-CBAM 1.00 0.95 0.9744 0.9731 

Analysis of the data in Table 2 reveals that the overall performance of the InceptionV2 series models is superior to that 

of the DenseNet121 series models. Among various improved models of InceptionV2, InceptionV2-ECA and 

InceptionV2-SAM demonstrate the best performance, with F1 scores and accuracies of 0.9850 and 0.9873 for 

InceptionV2-ECA, and 0.9850 and 0.9858 for InceptionV2-SAM, respectively. In contrast, the performance of the 

DenseNet121-SE model is the poorest, despite its recall rate reaching 1.00. However, its precision is low, at only 0.81, 

with F1 scores and accuracies being the lowest among all models, at 0.8950 and 0.8797, respectively. Therefore, this 

experiment concludes that the InceptionV2-ECA model performs the best, while the DenseNet121-SE model performs 

the worst. 

4. CONCLUSION 

This study employs DenseNet121 and InceptionV2 models as base models and incorporates five attention mechanisms, 

namely ECA, SE, CBAM, SAM, and CAM, to conduct rock mass fracture detection. The experiments reveal that the 

InceptionV2 model with the added ECA attention mechanism performs the best, with F1 score and accuracy reaching 

0.9850 and 0.9873, respectively, the highest among all models. However, adding attention mechanisms may also 

decrease the model’s performance, as evidenced by the decreased precision, accuracy, and F1 score of the DenseNet121 

model after incorporating the SE attention mechanism compared to the original model. 

The improved InceptionV2 model, although achieving satisfactory results in rock mass fracture detection, still presents 

areas for improvement in the experiment. For example, expanding the dataset and enlarging the data collection area are 

necessary. The limited scope of dataset collection and the scarcity of data samples may lead to the model performing 

well in some environments while exhibiting decreased recognition performance in other regions. 
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