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ABSTRACT 

Text keyword extraction refers to finding the words or phrases from an article that best represent its topic or content. Text 

keyword extraction is not only helpful to quickly understand the content of the text, but also can be used in NLP tasks such 

as information retrieval, automatic summarization, text classification, etc. In order to improve the performance of keyword 

extraction algorithm, this paper proposes a keyword extraction model AttentionRank based on the self-attention 

mechanism of BERT model by using BERT pre-trained language model. The pre-trained BERT language model can 

recognize keywords through self-attention and cross-attention, and enhance the ability of keyword extraction algorithm to 

understand context. The experimental results show that AttentionRank has obvious advantages in keyword extraction 

compared with LDA and LSA algorithms. 
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1. INTRODUCTION 

Text keyword extraction is a key technology in the field of Natural Language Processing (NLP). In recent years, many text 

keyword extraction algorithms have emerged, including those based on text itself, such as Term Frequency-Inverse Term 

Frequency (TF-IDF) and TextRank algorithm. There is also keyword extraction algorithms based on topic model, such as 

Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA) algorithm, etc.1. The keyword extraction algorithm 

based on topic model is superior to the traditional TF-IDF and TextRank algorithms based on text itself, and its 

performance is more obvious. However, the key word extraction algorithm still faces many challenges, including 

polysemy, long text processing and cross-language key word extraction. In response to these challenges, many related 

technical research directions have been derived, including the use of deep learning architecture semantic networks, such as 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), Transformer, etc., to improve the performance 

of keyword extraction2. The entity information in the knowledge graph is combined with the relationship information 

between entities through the knowledge graph to improve the accuracy and ease of keyword extraction. In this paper, a 

keyword extraction model based on the self-attention mechanism of Bidirectional Encoder Representations from 

Transformers (BERT) model, is proposed by using BERT pre-trained language model. This is because the self-attention 

mechanism of the BERT model is able to capture the dependencies between different positions in the input sequence and 

generate high-quality text representations based on these dependencies3. AttentionRank keyword extraction algorithm 

based on BERT model uses attention mechanism to enhance the recognition ability of keywords, and shows obvious 

advantages in keyword extraction tasks. 

2. BERT MODEL INFRASTRUCTURE 

BERT is a pre-trained language representation model based on the Transformer model, proposed by Google in 2018. The 

infrastructure of the BERT model is shown in Figure 14. 

 
729035457@qq.com 

International Conference on Optics, Electronics, and Communication Engineering (OECE 2024), 
edited by Yang Yue, Proc. of SPIE Vol. 13395, 133954H · © 2024 SPIE · 0277-786X · Published 

under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3049066

Proc. of SPIE Vol. 13395  133954H-1



 

Figure 1. BERT model architecture diagram. 

(1) Input layer 

BERT’s input is a sequence of raw text, which can be a single sentence or two sentences (for example, the question and 

answer in a question-and-answer task). These texts need to go through specific pre-processing steps before being input into 

the model. 

(2) Tokenization and Embeddings 

Tokenization: Input text is first split into tokens using a Tokenizer. This step usually involves converting text to lower case, 

removing punctuation, word segmentation, and so on. BERT uses the WordPiece method to further divide words into 

subwords to optimize the size of the vocabulary and the generalization power of the model. 

Token Embeddings: The Token after the participle is mapped to a high-dimensional space to form Token Embeddings. 

This is done by looking for a pre-trained embedded matrix that provides a fixed-size vector representation for each Token. 

Segment Embeddings: Since BERT is capable of processing two sentences as input (for example, in a sentence pair 

classification task), a way to distinguish between two sentences is needed. Segment Embeddings are used for this purpose, 

adding an additional embed to each Token to indicate which sentence it belongs to (usually “A” or “B”). 

Position Embeddings: Since the Transformer model itself does not have the ability to process the Token location 

information in the sequence, position embeddings are required to provide this information. Each position has a unique 

embedding vector that is learned during training. 

Token Embeddings, Segment Embeddings, and Position Embeddings are added together to get the final input embeddings 

for each Token. 

(3) Network Structure of BERT 

Its core component is a multi-layered Transformer Encoder, with each layer containing self-attention mechanisms and 

feedforward networks, a structure capable of capturing long distance dependencies and generating high-quality text 

representations. 

Self-attention mechanism: Allows the model to focus on tokens in different locations while processing the sequence and 

calculate the attention weights between tokens, thus capturing dependencies in the input sequence. The Self-Attention 

Mechanism in BERT, a core component of the Transformer architecture, allows the model to focus on information at 

different points in the input sequence and assign different weights based on how important that information is. 

Feedforward neural network: The output of the self-attention mechanism is further transformed to extract higher-level 

features. 

Residual connection and layer normalization: Used to improve the training stability and effectiveness of the model, helping 

to mitigate gradient disappearance and gradient explosion problems. 

(4) Output 
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The output of BERT depends on the specific task. In the pre-training phase, BERT employed two tasks: Masked Language 

Model (MLM) and Next Sentence Prediction (NSP). 

MLM: In this task, BERT predicts tokens that are randomly masked in the input sequence. The output of the model is the 

probability distribution for each masked Token, obtained through the Softmax layer. 

NSP: This task requires BERT to predict whether two sentences are consecutive or not. The output of the model is a 

probability distribution of a binary classification problem. 

3. HOW THE SELF-ATTENTION MECHANISM WORKS IN BERT 

First, BERT converts the input text into embedding vectors. These embeddings include word embeddings, position 

embeddings, and (in some tasks) segment embeddings5. 

For each position in the input sequence, BERT generates three vectors: a query vector, a key vector, and a value vector. 

These three vectors are obtained by multiplying the embedding vector by three different weight matrices (learned during 

training)6. 

For each position in the input sequence, BERT calculates the dot product between the query vector for that position and the 

key vectors for all positions in the sequence. These dot product values are then divided by a scaling factor (usually the 

square root of the key vector dimension) to obtain the attention scores7. 

The attention score is entered into the softmax function to calculate a probability distribution that describes the importance 

of each position in the sequence to the current position8. 

Using the probability distribution obtained in the previous step as the weights, the value vectors of all positions in the 

sequence are weighted and summed to obtain the output vector of the current position. This output vector is a weighted 

combination of all the position information in the sequence, reflecting how important the different positions are to the 

current position9. 

To enhance the representation of the model, BERT uses a multi-head attention mechanism9. This means that BERT 

calculates several different self-attention weights for each input position and combines these weights to generate the final 

output vector. Each “head” independently learns different attention weights to capture different aspects of the input 

sequence. 

Through the above process, BERT’s self-attention mechanism is able to capture dependencies between different locations 

in the input sequence and generate high-quality text representations based on these dependencies. This makes BERT 

excellent at a variety of natural language processing tasks. 

4. KEYWORDS EXTRACTION BASED ON ATTENTION MECHANISM OF BERT 

MODEL 

4.1 Keyword extraction model based on BERT model self-attention mechanism 

Keyword extraction is the identification of words or phrases that represent the main topic of a document. In this section, 

AttentionRank, a keyword extraction model based on the self-attention mechanism of BERT model, is proposed. 

Pre-trained BERT language models can identify keywords through self-attention and cross-attention. The working process 

of AttentionRank model to extract text keywords is shown in Figure 2. 

 

Figure 2. Keyword extraction process of AttentionRank model. 
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First, the text is divided into words, and BERT is used to calculate the embedding value of the text and the embedding 

value of the word. Then, the cosine similarity between the embedding vector of the word and the embedding vector of the 

text is calculated, and the text keywords are sorted according to the similarity. 

To obtain self-attention values for individual words in a sentence, we extract word-word self-attention weights from a 

pre-trained BERT model, and then sum up the attention that the word receives from other words in the same sentence. Next, 

we add up the attention of the member words of this candidate word to calculate the self-attention value of candidate c in 

the sentence. The document-level cumulative self-attention value of candidate word c is calculated as the sum of all 

self-attention values of word c in each sentence in document d. This method helps us to understand the importance of each 

part of the text and the relationship between them, and has important application value for natural language processing 

tasks such as keyword extraction and text classification. 

4.2 Specific implementation of AttentionRank model 

AttentionRank integrates a cumulative self-attention component with a cross-attention component to calculate a 

candidate’s final score. The structure of AttentionRank model is shown in Figure 3. 

 

Figure 3. Structure of AttentionRank model. 

(1) Candidate generation. We use the candidate extraction module implemented in EmbedRank. The module first uses 

parts of speech (PoS) to identify words labeled NN, NNS, NNP, NNPS, JJ, and so on. The python package NLTK is then 

used to generate noun phrases, which are the candidates. Most of the parameters of the program can be controlled by a 

simple switch in a text file edited by the experimenter or in the program code, minimizing the need for programming to 

create new experiments. 

(2) Cumulative self-attention calculation. A collection of member words for candidate c: 𝑤𝑐 ={𝑤1
𝑐 ,…, 𝑤𝑚

𝑐 }. The 

self-attention value of candidate c can be calculated by equations (1) and (2). 

𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑟𝑜𝑤(𝑤𝑐 ∙ 𝑤𝑐𝑇) ∙ 𝑤𝑐                                  (1) 

𝑎𝑐=𝐴𝑉𝐸(𝑎[: , 𝑖])     𝑎𝑐 ∈ 𝑅𝐻                                   (2) 

(3) Cross attention computation. A pre-trained BERT model can generate a word-level embedding set of candidate word c: 

𝐸𝑐={𝑒1
𝑐,…𝑒𝑚

𝑐 }, in which 𝑒𝑖 ∈ 𝑅𝐻. Similarly, 𝐸𝑖 is the representation of the sentence i containing n words: 𝐸𝑖={𝑒1
𝑖 ,…𝑒𝑛

𝑖 }，

in which 𝑒𝑖 ∈ 𝑅𝐻 . 

Given a sentence i, expressed as  𝐸𝑖 , and a candidate word c, expressed as: 𝐸𝑐 , sentence-to-candidate and 

candidate-to-sentence similarity can be measured by equations (4) and (5). 

𝑆 = 𝐸𝑖 ∙ 𝐸𝑐𝑇                                          (3) 

𝑆𝑖2𝑐=𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑟𝑜𝑤(𝑆)                                      (4) 
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𝑆𝑐2𝑖=𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐𝑜𝑙𝑢𝑚𝑛(𝑆)                                     (5) 

Sentence-to-candidate cross attention and candidate-to-sentence cross attention are calculated from equations (6) and (7). 

𝐴𝑖2𝑐=𝑆𝑖2𝑐 ∙ 𝐸𝑐                                         (6) 

𝐴𝑐2𝑖=𝑆𝑖2𝑐 ∙ 𝑆𝑐2𝑖
𝑇 ∙ 𝐸𝑖                                       (7) 

Based on these cross-attention, a set of neologism embeddings for sentence i is constructed. 

𝑉𝑖=𝐴𝑉𝐺(𝐸𝑖 ,𝐴𝑖2𝑐,𝐸𝑖ʘ𝐴𝑖2𝑐,𝐸𝑖ʘ𝐴𝑐2𝑖)                                (8) 

𝑉𝑖 is a set of word embeddings that contain the relationship between candidate c and sentence i. Standardized sentence 

embeddings can be calculated using equations (9) and (10). 

𝐼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑟𝑜𝑤(𝑉𝑖 ∙ 𝑉𝑖𝑇) ∙ 𝑉𝑖                                  (9) 

𝛼𝑖=𝐴𝑉𝐸(𝐼[: , 𝑖])     𝛼𝑖 ∈ 𝑅𝐻                                  (10) 

in which AVE indicates taking the mean value. 

Given a document d, it contains a set of sentences:𝐸𝑑={𝛼1,…𝛼𝑖}. A standardized document embedding can be calculated 

using equations (11) and (12). 

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑟𝑜𝑤(𝐸𝑑 ∙ 𝐸𝑑𝑇)  ∙ 𝐸𝑑                                (11) 

𝑝𝑑=𝐴𝑉𝐸(𝑃[: , 𝑖])       𝑝𝑑 ∈ 𝑅𝐻                                  (12) 

The word embeddings set of candidate word c:𝐸𝑐={𝑒1
𝑐 ,…𝑒𝑚

𝑐 }. Candidate word embeddings can be calculated using 

equations (13) and (14). 

𝐶 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑟𝑜𝑤(𝐸𝑐 ∙ 𝐸𝑐𝑇) ∙ 𝐸𝑐                               (13) 

𝑝𝑐=𝐴𝑉𝐸(𝐶[: , 𝑖])        𝑝𝑐 ∈ 𝑅𝐻                                 (14) 

The correlation between a candidate word c and document d is determined by the cosine similarity between 𝑝𝑐  and   𝑝𝑑, as 

shown in equation (15). 

𝑟𝑐=
𝑝𝑐∙𝑝𝑑

‖𝑝𝑐‖∙‖𝑝𝑑‖
                                          (15) 

(4) Final score calculation. Candidate c’s final score is a linear combination of cumulative self-attention values and 

cross-attention correlation values: 

𝑠𝑐=𝑑 ∗ 𝑎𝑐+(1-d) ∗ 𝑟𝑐，where 𝑑 ∈ [0,1]                             (16) 

According to the final score of the candidate words, the keyword topN results can be obtained. 

4.3 AttentionRank model extracts keyword experimental results 

In this section, accuracy rate (p-value), recall rate (R-value) and F1 value are still used to evaluate the BERT model 

algorithm compared with LSA and LDA. The comparison results are shown in Figures 4-6. 

 

Figure 4. Comparison of accuracy rate (p-value) between BERT model and subject model. 
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Figure 5. Comparison of recall rate (R-value) between BERT model and subject model. 

 

Figure 6. Comparison of F1 value between BERT model and subject model. 

5. CONCLUSIONS 

In this paper, AttentionRank, a keyword extraction model based on the self-attention mechanism of BERT model, is 

proposed by using BERT pre-trained language model. The pre-trained BERT language model can recognize keywords 

through self-attention and cross-attention, and enhance the ability of keyword extraction algorithm to understand 

context.The experimental results show that AttentionRank has obvious advantages in keyword extraction tasks. By 

continuously improving the accuracy and robustness of the keywords extraction algorithm, so that it can adapt to 

different types and fields of text data environment, the future keyword extraction algorithm is expected to achieve better 

results in the processing of complex text and cross-language scenes. 
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