Front Matter: Volume 8396

Event: SPIE Defense, Security, and Sensing, 2012, Baltimore, Maryland, United States
Contents

SESSION 1 ARCHITECTURES FOR GEOSPATIAL COLLECTION APPLICATIONS

8396 02 Semantics for airborne video imagery ontology [8396-01]
A. Mirzaoff, ITT Exelis (United States)

8396 04 Feature fusion using ranking for object tracking in aerial imagery [8396-03]
S. Candemir, K. Palaniappan, F. Bunyak, Univ. of Missouri-Columbia (United States);
G. Seetharaman, Air Force Research Lab. (United States)

8396 05 Developments for a harmonized metadata model for improving cross-community
geo-related search and retrieval [8396-04]
D. Böker, P. Harant, A. Weigel, P. Watzka, IABG (Germany)

8396 06 Interactive target tracking for persistent wide-area surveillance [8396-05]
I. Ersoy, K. Palaniappan, Univ. of Missouri-Columbia (United States); G. S. Seetharaman, U.S.
Air Force Research Lab. (United States); R. M. Rao, U.S. Army Research Lab. (United States)

8396 07 A geometry-based image search engine for advanced RADARSAT-1/2 GIS applications
[8396-06]
V. Kotamraju, B. Rabus, J. Busler, MDA Systems Ltd. (Canada)

8396 09 Autonomous cross-correlation of optical MTI for live inspection and tracking [8396-09]
J. Edelberg, B. J. Daniel, M. Wilson, Naval Research Lab. (United States); S. Frawley, Smart
Logic, Inc. (United States); C. Meadows, T. Johnson, Space Dynamics Lab. (United States);
M. Duncan, Naval Research Lab. (United States) and Office of Naval Research (United
States)

8396 0A Optimizing sensor placement using predictive geospatial analytics, the physical
environment, and surveillance constraints [8396-10]
G. Schmidt, B. Witham, J. Valore, B. Holland, J. Dalton, GeoEye Analytics (United States)

8396 0B Information space models for data integration, and entity resolution [8396-11]
R. Porter, L. Collins, J. Powell, R. Rivenburgh, Los Alamos National Lab. (United States)

SESSION 2 GEOSPATIAL SEARCH, VISUALIZATION, AND DISSEMINATION METHODS

8396 0C Using GIS databases for simulated nightlight imagery [8396-12]
J. D. Zollweg, M. G. Gartley, Rochester Institute of Technology (United States);
J. Roskovensky, J. Mercier, Sandia National Labs. (United States)
Geospatial processing of registered H.264 data [8396-14]
R. Maleh, F. A. Boyle, P. B. Deignan, L-3 Communications (United States)

The hybrid approach for large scale network access and querying [8396-16]
S. Xing, X. Liu, A. Hampapur, IBM Thomas J. Watson Research Ctr. (United States)

Potential standards support for activity-based GeoINT [8396-17]
J. Antonisse, Motion Imagery Standards Board (United States)

SESSION 3
GEOSPATIAL DATA PROCESSING ALGORITHMS AND TECHNIQUES

Uncertainty handling in geospatial data [8396-18]
P. J. Doucette, D. J. Motsko, M. Sorensen, D. A. White, National Geospatial-Intelligence Agency (United States)

Addressing terrain masking in orbital reconnaissance [8396-19]
S. Mehta, L. Cico, Mercury Computer Systems (United States)

Validate and update of 3D urban features using multi-source fusion [8396-21]
M. Arrington, D. Edwards, A. Sengers, National Geospatial-Intelligence Agency (United States)

Modeling spatial uncertainties in geospatial data fusion and mining [8396-24]
B. Kovalerchuk, Central Washington Univ. (United States); L. Perlovsky, Harvard Univ. (United States); M. Kovalerchuk, BKF Systems (United States)

Image and video based remote target localization and tracking on smartphones [8396-25]
Q. Wang, A. Lobzhanidze, H. Jang, W. Zeng, Y. Shang, Univ. of Missouri-Columbia (United States); J. Yang, Tianjin Univ. (China)

A spatial intensity phase evaluator (SIPHER) for perceptual object detection in images [8396-26]
A. Drake, H. Hirsch, CACI (United States)
Conference Committee

Symposium Chair

Kevin P. Meiners, Office of the Secretary of Defense (United States)

Symposium Cochair

Kenneth R. Israel, Lockheed Martin Corporation (United States)

Conference Chairs

Matthew F. Pellechia, ITT Exelis Inc. (United States)
Richard J. Sorensen, U.S. Air Force Aeronautical Systems Center (United States)

Conference Cochairs

Shiloh L. Dockstader, ITT Exelis Inc. (United States)
Kannappan Palaniappan, University of Missouri-Columbia (United States)
Xuan Liu, IBM Thomas J. Watson Research Center (United States)

Program Committee

Erik P. Blasch, Air Force Research Laboratory (United States)
Bernard V. Brower, ITT Exelis Inc. (United States)
Filiz Bunyak, University of Missouri-Columbia (United States)
Rama Chellappa, University of Maryland, College Park (United States)
Hui Cheng, SRI International Sarnoff (United States)
Brian J. Daniel, U.S. Naval Research Laboratory (United States)
James W. Davis, The Ohio State University (United States)
Larry S. Davis, University of Maryland, College Park (United States)
Paul B. Deignan, L-3 Communications Integrated Systems (United States)
Emmanuel Duflos, École Centrale de Lille (France)
Daniel Edwards, National Geospatial-Intelligence Agency (United States)
Paul W. Fieguth, University of Waterloo (Canada)
Michael E. Gangl, MacAulay-Brown, Inc. (United States)
Robert J. Gillen, University of Dayton Research Institute (United States)
Adel Hafiane, Ecole Nationale Supérieure d'Ingénieurs (France)
Anthony J. Hoogs, Kitware, Inc. (United States)
Yan Huang, University of North Texas (United States)
Holger E. Jones, Lawrence Livermore National Laboratory (United States)
Simon J. Julier, University College London (United Kingdom)
Frederick W. Koehler IV, National Geospatial-Intelligence Agency (United States)
Boris Kovalerchuk, Central Washington University (United States)
Mohamed F. Mokbel, University of Minnesota, Twin Cities (United States)
Dennis Motsko, National Geospatial-Intelligence Agency (United States)
Raghuveer M. Rao, U.S. Army Research Laboratory (United States)
Carlo Regazzoni, Università degli Studi di Genova (Italy)
Gunasekaran Seetharaman, Air Force Research Laboratory (United States)
Philippe M. Vanheeghe, École Centrale de Lille (France)
Pramod Kumar Varshney, Syracuse University (United States)
Darrell L. Young, Raytheon Intelligence & Information Systems (United States)
John A. Richards, Sandia National Laboratories (United States)
Ranga Raju Vatsavai, Oak Ridge National Laboratory (United States)
Karmon M. Vongsy, Air Force Research Laboratory (United States)
Lexing Xie, The Australian National University (Australia)
Chengyang Zhang, Terradata Corporation (United States)

Session Chairs

1 Architectures for Geospatial Collection Applications
 Richard J. Sorensen, U.S. Air Force Aeronautical Systems Center (United States)
 Paul B. Deignan, L-3 Communications Integrated Systems (United States)

2 Geospatial Search, Visualization, and Dissemination Methods
 Xuan Liu, IBM Thomas J. Watson Research Center (United States)

3 Geospatial Data Processing Algorithms and Techniques
 Kannappan Palaniappan, University of Missouri-Columbia (United States)
Introduction

A Geospatial Information System (GIS) describes any information system that collects, integrates, stores, edits, analyzes, shares, and displays geographic information. GIS systems are fundamental to today’s information networks and inherently encompass techniques that transform “raw bits and bytes” into “actionable information”, also termed InfoFusion. GIS applications incorporate tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data, maps, and present the results of all these operations. In the commercial sector, GIS systems are used in cartography, remote sensing, land surveying, utility management, geographical strategic natural resource planning, photogrammetric science, geography, urban planning, emergency management, navigation, and localized search engines. For example, defense and security applications, such as Unmanned Ariel Systems and Airport Security Systems, are rapidly transforming from basic sensor collection systems that “take pictures” to fully-capable GIS systems that incorporate multi-sensor collections, perform advanced processing and correlations in real-time, initiate sensor cross-cueing, and allow multiple users to instantly retrieve and disseminate information. GIS is critical to defense and security providers in order to enable satisfying emerging demands and rapid access to information for situational awareness and forensic back-tracking missions.

These Proceedings provide the SPIE community with a collection of perspectives, advancements, learning, and new solutions from a range of global industry, government and academic authors. The motivation of this conference track is simple: to expand the awareness of advanced architectures and enabling technologies that address emerging and adaptive security threats. Technical and scientific papers related to advancements in architectures for GIS collection sensors, data processing algorithms and techniques, information dissemination, serving, search, and query methodologies, and information visualization solutions that push beyond the scope of the state-of-the-art in industry are solicited.

On behalf of the Conference Chairs, Mr. Matthew Pellechia, and Mr. Richard Sorensen, and our cochairs, we hope you find these proceedings useful in the advancement of GIS technologies.

Matthew F. Pellechia
Richard J. Sorensen
Shiloh L. Dockstader
Kannappan Palaniappan
Xuan Liu