Front Matter: Volume 6702
Contents

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Laser Development and Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>6702 02</td>
<td>High-brightness tabletop soft X-ray lasers at high repetition rate: injection-seeding of solid target plasma amplifiers and other developments (Invited Paper) [6702-01]</td>
</tr>
<tr>
<td></td>
<td>J. J. Rocca, Y. Wang, B. M. Luther, M. Berrill, M. A. Larotonda, E. Granados, D. Alessi, D. Martz, F. Pedacci, D. Patel, Colorado State Univ. (USA); V. N. Shlyaptsev, Univ. of California Davis-Livermore (USA); C. S. Menoni, Colorado State Univ. (USA)</td>
</tr>
<tr>
<td>6702 03</td>
<td>New results at the Bern x-ray laser facility (Invited Paper) [6702-02]</td>
</tr>
<tr>
<td></td>
<td>J. E. Balmer, M. Grünig, C. Imesch, F. Staub, Univ. of Bern (Switzerland)</td>
</tr>
<tr>
<td>6702 04</td>
<td>Plasma interactions in laser irradiated semi-cylindrical cavities studied with soft x-ray interferometry using a capillary discharge laser [6702-03]</td>
</tr>
<tr>
<td></td>
<td>M. Purvis, J. Grava, J. Filevich, M. C. Marconi, J. J. Rocca, Colorado State Univ. (USA); J. Dunn, S. J. Moon, J. Nilsen, Lawrence Livermore National Lab. (USA); V. N. Shlyaptsev, Univ. of California, Davis-Livermore (USA); E. Jankowska, Wroclaw Univ. of Technology (Poland)</td>
</tr>
<tr>
<td>6702 05</td>
<td>Characterisation of the grazing incidence pumped nickel-like molybdenum x-ray laser and experimental investigation into lasing from high Z targets [6702-04]</td>
</tr>
<tr>
<td></td>
<td>M. H. Edwards, N. Booth, Z. Zhai, G. J. Tallents, Univ. of York (United Kingdom); T. Dzelzainis, C. L. S. Lewis, The Queen's Univ. of Belfast (United Kingdom); P. Foster, M. Streeter, D. Neely, Rutherford Appleton Lab. (United Kingdom); A. Behjat, Univ. of Yazd. (Iran); Q. Dong, S. Wang, Institute of Physics (China)</td>
</tr>
</tbody>
</table>

SESSION 2 | OFI and Toward Shorter Wavelengths

6702 06	Ultrashort pulse driven optical-field-ionization x-ray lasers (Invited Paper) [6702-05]
	J.-Y. Lin, National Chung Cheng Univ. (Taiwan); M.-C. Chou, National Chung Cheng Univ. (Taiwan) and Institute of Atomic and Molecular Sciences, Academia Sinica (Taiwan); P.-H. Lin, National Taiwan Univ. (Taiwan) and National Central Univ. (Taiwan); C.-A. Lin, National Chung Cheng Univ. (Taiwan) and Institute of Atomic and Molecular Sciences, Academia Sinica (Taiwan); S.-Y. Chen, Institute of Atomic and Molecular Sciences, Academia Sinica (Taiwan) and National Central Univ. (Taiwan); J. Wang, Institute of Atomic and Molecular Sciences, Academia Sinica (Taiwan), National Taiwan Univ. (Taiwan), and National Central Univ. (Taiwan)
6702 08	The practicality of x-ray lasers for the sub–50Å wavelength range (Invited Paper) [6702-07]
	G. J. Pert, Univ. of York (United Kingdom)
SESSION 3
SEEDED LASERS

6702 09 Characterization of an OFI seeded soft x-ray laser (Invited Paper) [6702-08]
Ph. Zeitoun, S. Sebban, J. P. Goddet, Lab. d’Optique Appliquée (France); F. Bridou, Lab.
Charles Fabray de l’Institut d’Optique, CNRS, Univ. Paris Sud (France); F. Burgy, Lab.
d’Optique Appliquée (France); B. Cros, Lab. de Physique des Gaz et Plasmas, Univ.
Paris-Sud (France); D. Douillet, J. Gautier, Lab. d’Optique Appliquée (France);
O. Guilbaud, G. Jamelot, Lab. d’Interaction du rayonnement, Univ. Paris Sud (France);
D. Joyeux, Lab. Charles Fabray de l’Institut d’Optique, CNRS, Univ. Paris Sud (France);
S. Kazamias, A. Klisnick, Lab. d’Interaction du rayonnement, Univ. Paris Sud (France);
G. Maynard, Lab. de Physique des Gaz et Plasmas, Univ. Paris-Sud (France); A. S. Morlens,
Lab. d’Optique Appliquée (France); D. Phalippou, Lab. Charles Fabray de l’Institut
d’Optique, CNRS, Univ. Paris Sud (France); T. Lefrou, Lab. d’Optique Appliquée (France);
D. Ros, Lab. d’Interaction du rayonnement, Univ. Paris Sud (France); J. P. Rousseau, Lab.
d’Optique Appliquée (France)

6702 0A Full characterization of a GRIP Ni-like Ag amplifier for seeding with high harmonics at 13.9
nm (Invited Paper) [6702-09]
K. A. Janulewicz, J. Tümmler, P. V. Nickles, Max Born Institute (Germany); H. T. Kim, I. W.
Choi, N. Hafz, C. M. Kim, H. C. Kang, J. H. Sung, T. J. Yu, K. H. Hong, T. M. Jeong, J. H. Kim,
Y.-C. Noh, D.-K. Ko, J. Lee, Kwangju Institute of Science and Technology (South Korea)

6702 0B Theoretical and experimental investigations of spectral and temporal properties of seeded
soft x-ray lasers (Invited Paper) [6702-10]
O. Guilbaud, A. Klisnick, K. Cassou, S. Kazamias, J. Habib, M. Pittman, D. Ros, LIxAM, Univ.
Paris-Sud (France); S. Sebban, J.-P. Goddet, J. Gautier, P. Zeitoun, LOA, ENSTA-Ecole
Polytechnique (France); I. Al’Miev, LIxAM, Univ. Paris-Sud (France); O. Larroche, CEA-Dif
(France); D. Benredjem, J. Dubau, C. Moller, LIxAM, Univ. Paris-Sud (France); D. Joyeux,
S. de Rossi, LCF-Inst. d’Optique, Univ. Paris-Sud (France); G. Maynard, B. Cros, A. Boudaa,
LPGP, Univ. Paris-Sud (France); Y. Pertot, E. Courtet, LIxAM, Univ. Paris-Sud (France);
D. Phalippou, LCF-Inst. d’Optique, Univ. Paris-Sud (France); J.-P. Rousseau, F. Burgy, LOA,
ENSTA-Ecole Polytechnique (France)

SESSION 4
FREE ELECTRON LASERS AND SYNCHROTRON SOURCES

6702 0E Relativistic Thomson scattering in compact linacs and storage rings: a route to quasi-
monochromatic tunable laboratory-scale x-ray sources [6702-13]
E. G. Bessonov, M. V. Gorbunkov, Yu. Ya. Maslova, P.N. Lebedev Physical Institute (Russia);
P. V. Kostryukov, V. G. Tunkin, B. S. Ishkhanov, V. I. Shvedunov, Moscow State Univ. (Russia);
A. V. Vinogradov, P.N. Lebedev Physical Institute (Russia)

6702 0F Inverse Compton backscattering source driven by the multi 10-TW laser installed at
Daresbury [6702-14]
G. Pribe, D. Laundy, L. B. Jones, G. P. Diakun, S. P. Jamison, D. J. Holder, STFC Daresbury
Lab. (United Kingdom); S. P. Mallon, Univ. of London (United Kingdom); P. J. Phillips, Univ.
of Dundee (United Kingdom); M. A. MacDonald, S. L. Smith, STFC Daresbury Lab. (United
Kingdom); G. J. Hirst, STFC Rutherford Appleton Lab. (United Kingdom); G. A. Krafft, Thomas
Jefferson National Accelerator Facility (USA); E. A. Seddon, STFC Daresbury Lab. (United
Kingdom)
SESSION 5 X-RAY LASERS APPLICATIONS I

6702 0G Development of soft x-ray lasers at PALS and their applications in dense plasma physics (Invited Paper) [6702-15]
B. Rus, T. Mocek, M. Kozlová, J. Polan, P. Homer, K. Jakubczak, M. Stupka, Institute of Physics (Czech Republic); G. J. Tallents, M. H. Edwards, N. Booth, Z. Zhai, Univ. of York (United Kingdom); J. Dunn, A. J. Nelson, Lawrence Livermore National Lab. (USA); M. Fajardo, Instituto Superior Técnico (Portugal); P. Zeitoun, Lab. d'Optique Appliquée, ENSTA (France); M. E. Foord, R. L. Shepherd, Lawrence Livermore National Lab. (USA); W. Rozmus, Univ. of Alberta (Canada); H. A. Baldis, Univ. of California, Davis (USA); J. Sobota, Institute of Scientific Instruments (Czech Republic)

6702 0H X-ray lasers as probes to measure plasma ablation rates [6702-16]

6702 0I Interferometric lithography with sub-100-nm resolution using a tabletop 46.9-nm laser [6702-17]
P. W. Wachulak, D. Patel, Colorado State Univ. (USA); M. G. Capeluto, Univ. de Buenos Aires (Argentina); C. S. Menoni, J. J. Rocca, M. C. Marconi, Colorado State Univ. (USA)

6702 0J Tabletop soft x-ray holography with sub-200-nm spatial resolution [6702-18]

SESSION 6 X-RAY LASERS APPLICATIONS II

6702 0K Neutral nanocluster chemistry studied by soft x-ray laser single-photon ionization: application to soft x-ray optical surface contamination studies- Si₃₄O₉ and Ti₂₄O₉ (Invited Paper) [6702-19]
S. Heinbuch, F. Dong, J. J. Rocca, E. R. Bernstein, Colorado State Univ. (USA)

6702 0L Nanoscale ablation with soft x-ray lasers [6702-20]
F. Brizuela, H. Bravo, G. Vaschenko, M. Berrill, B. Langdon, C. S. Menoni, Colorado State Univ. (USA); O. Hemberg, S. Bloom, JMAR Technologies, Inc. (USA); W. Chao, E. H. Anderson, D. T. Attwood, Lawrence Berkeley National Lab. (USA) and Univ. of California, Berkeley (USA); J. J. Rocca, Colorado State Univ. (USA)

6702 0M High spatial resolution full-field microscopy using a desktop-size soft x-ray laser [6702-21]
C. A. Brewer, F. Brizuela, D. Martz, G. Vaschenko, M. C. Marconi, Colorado State Univ. (USA); W. Chao, E. H. Anderson, D. T. Attwood, Lawrence Berkeley National Lab. (USA); A. V. Vinogradov, I. A. Artioukov, P.N. Lebedev Physical Institute (Russia); Y. P. Pershyn, V. V. Kondratenko, National Technical Univ. KhPI (Ukraine); J. J. Rocca, C. S. Menoni, Colorado State Univ. (USA)

6702 0N Searching for plasmas with anomalous dispersion in the soft x-ray regime [6702-22]
J. Nilsen, Lawrence Livermore National Lab. (USA); W. R. Johnson, Univ. of Notre Dame (USA); K. T. Cheng, Lawrence Livermore National Lab. (USA)
21-nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas [6702-23]
J. Dunn, Lawrence Livermore National Lab. (USA); B. Rus, T. Mocek, Institute of Physics (Czech Republic); A. J. Nelson, M. E. Foord, Lawrence Livermore National Lab. (USA); W. Rozmus, Univ. of Alberta (Canada); H. A. Baldis, Univ. of California, Davis (USA); R. L. Shepherd, Lawrence Livermore National Lab. (USA); M. Kozlová, J. Polan, P. Homer, M. Stupka, Institute of Physics (Czech Republic)

SESSION 7 OVERVIEWS

Recent progress on x-ray laser source development and application activities at JAEA (Invited Paper) [6702-24]
M. Kishimoto, K. Nagashima, T. Kawachi, N. Hasegawa, M. Tanaka, Y. Ochi, M. Nishikino, K. Sukegawa, H. Yamatani, Y. Kunieda, Japan Atomic Energy Agency (Japan); S. Namba, Hiroshima Univ. (Japan); K. Namikawa, Japan Atomic Energy Agency (Japan) and Tokyo Gakugei Univ. (Japan); Y. Kato, Japan Atomic Energy Agency (Japan)

LASERIX: a high-repetition-rate laser facility for performing intense XUV sources [6702-25]

EUV lasers on low-inductive capillary discharges [6702-26]
V. A. Burtsev, E. P. Bolshakov, N. V. Kalinin, V. A. Kubasov, V. I. Chernobrovin, D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russia)

SESSION 8 X-RAY OPTICS

Structural transformations in Sc/Si multilayers irradiated by EUV lasers [6702-29]
D. L. Voronov, Lawrence Berkeley National Lab. (USA) and National Technical Univ. KhPI (Ukraine); E. N. Zubarev, Y. P. Pershyn, V. A. Sevryukova, V. V. Kondratenko, National Technical Univ. KhPI (Ukraine); A. V. Vinogradov, I. A. Artioukov, Y. A. Uspenskiy, P.N. Lebedev Physical Institute (Russia); M. Grisham, Colorado State Univ. (USA); G. Vaschenko, Cymer, Inc. (USA); C. S. Menoni, J. J. Rocca, Colorado State Univ. (USA)

Advances in short-wavelength x-ray multilayer optics: toward high-throughput multi-mirror systems for the wavelengths <10 nm [6702-30]
I. A. Artyukov, P.N. Lebedev Physical Institute (Russia); Y. A. Bugayev, O. Yu. Devizenko, Kharkov Polytechnic Institute, National Technical Univ. (Ukraine); R. M. Feshchenko, P.N. Lebedev Physical Institute (Russia); T. Hatano, Tohoku Univ. (Japan); Y. S. Kasyanov, A.M.Prokhorov General Physics Institute (Russia); V. V. Kondratenko, Kharkov Polytechnic Institute, National Technical Univ. (Ukraine); Y. A. Uspenski, A. V. Vinogradov, P.N. Lebedev Physical Institute (Russia)

POSTER SESSION

Optimization of nitrogen filled capillary pinch for soft x-ray laser recombination pumping [6702-32]
P. Vrba, Institute of Plasma Physics (Czech Republic); M. Vrbova, Czech Technical Univ. in Prague (Czech Republic)
Development of ultrafast soft x-ray beamline at PALS and surface modification of solids by high-order harmonics [6702-33]
K. Jakubczak, T. Mocek, J. Polan, P. Homer, B. Rus, Institute of Physics (Czech Republic); I. J. Kim, C. M. Kim, G. H. Lee, D. S. Kim, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, Korea Advanced Institute of Science and Technology (South Korea); V. Hajkova, J. Chalupsky, L. Juha, Institute of Physics (Czech Republic)

Gallium-based avalanche photon counter with picosecond timing resolution for X to visible range [6702-35]
J. Blazej, I. Prochazka, Czech Technical Univ. in Prague (Czech Republic)

Target delivery system for high repetition rate lasers [6702-36]
J. Polan, T. Havlicek, B. Rus, Institute of Physics (Czech Republic)

Measurements of x-ray laser wavefront profile using PDI technique [6702-37]
P. Homer, B. Rus, J. Polan, Institute of Physics (Czech Republic)

Author Index
Conference Committee

Conference Chairs

Gregory J. Tallents, The University of York (United Kingdom)
James Dunn, Lawrence Livermore National Laboratory (USA)

Program Committee

Ernst E. Fill, Max-Planck-Institut für Quantenoptik (Germany)
Sylvie Jacquemot, École Polytechnique (France)
Gerard Jamelot, Université Paris-Sud (France)
Yoshiaki Kato, Japan Atomic Energy Agency (Japan)
Claran L. S. Lewis, The Queen's University of Belfast (United Kingdom)
Peter-Viktor Nickles, Max-Born-Institut (Germany)
Joseph Nilsen, Lawrence Livermore National Laboratory (USA)
Geoffrey J. Pert, University of York (United Kingdom)
Jorge J. G. Rocca, Colorado State University (USA)
Szymon Suckewer, Princeton University (USA)
Alexander V. Vinogradov, P.N. Lebedev Physical Institute (Russia)

Session Chairs

1 Laser Development and Applications
 James Dunn, Lawrence Livermore National Laboratory (USA)

2 OFI and Toward Shorter Wavelengths
 Gregory J. Tallents, The University of York (United Kingdom)

3 Seeded Lasers
 Joseph Nilsen, Lawrence Livermore National Laboratory (USA)

4 Free Electron Lasers and Synchrotron Sources
 Geoffrey J. Pert, University of York (United Kingdom)

5 X-Ray Lasers Applications I
 Peter-Viktor Nickles, Max-Born-Institut (Germany)

6 X-Ray Lasers Applications II
 Sylvie Jacquemot, École Polytechnique (France)

7 Overviews
 Jorge J. G. Rocca, Colorado State University (USA)

8 X-Ray Optics
 Claran L. S. Lewis, The Queen's University of Belfast (United Kingdom)
Introduction

Since the last SPIE X-Ray Laser and Applications Conference in 2005, there has been rapid progress in both source development and applications of extreme ultraviolet (EUV) soft x-ray lasers. This volume reviews the field, presents new topical areas, and shows new directions for the future. Other related topics are included on recent free electron lasers (FELs) with applications, hard x-ray synchrotron sources, as well as higher order harmonic generation (HOH).

New activities in seeded lasers were reported by several groups where a selected harmonic was used as the oscillator to wavelength-match and seed amplifier stages of either laser-driven solid targets or optical field ionization-driven (OFI) gas targets. The improved parameters of these seeded lasers included better wavefront, coherence, collimation, and peak brightness characteristics. The conclusion was that the seeded laser had better parameters than either of the two starting lasers.

Improvements in x-ray laser performance were reported for several different laser schemes when laser pre-pulse energy or delay were adjusted. This indicates that plasma optimization continues to be an important area. New experimental results also showed the possibility of achieving lasing simultaneously from different gases driven by the OFI scheme. Many presentations reported 10–50 nm soft x-ray experiments requiring low laser drive energy from smaller tabletop facilities including OFI, capillary discharge, and grazing incidence laser pumping schemes. Large scale laser drivers also played an important role for short wavelength laser development below 10 nm and applications requiring pulsed, high-output, millijoule soft x-ray energy. New facilities and new laser technology, for example zig-zag slab amplifiers and upgraded laser facilities with multiple beam capability, were discussed indicating that the driver technology continues to advance.

This conference showed an ever-growing list of new applications based on improved x-ray laser sources with expanded capability. X-ray optics development was shown as a necessary activity to realize these applications. Time-of-flight mass spectroscopy was used to determine the reactivity of coating materials for EUV optics and give insight to the chemistry of clusters. Tabletop x-ray laser-based microscopy with zone plates revealed results with spatial resolution approaching 50 nm close to the wavelength of the probe. Holographic imaging was presented while lensless imaging was demonstrated for both FEL and capillary discharge lasers. Focused x-ray laser beams could be used for heating or nanoscale damage studies drilling holes less than 100 nm in diameter. X-ray laser probe beams were shown for interferometry of colliding plasmas, potential use as a Thomson scattering diagnostic, mass ablation studies and the opacity of laser-heated foils.
We appreciate and gratefully acknowledge the continuation of this series of conferences on plasma-based x-ray lasers by SPIE. The organization of the conference and the publication of the proceedings volume would not be possible without the considerable effort and support of the SPIE staff. We would like to thank the advisory board for suggesting invited talks and to the session chairs for helping in the running of the conference. Finally, we give our thanks to the many speakers for their participation and contributions to the successful 2007 meeting.

James Dunn
Gregory Tallents