Front Matter: Volume 10100
Optical Components and Materials XIV

Shibin Jiang
Michel J. F. Digonnet
Editors

30 January–1 February 2017
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

vii Authors
xi Conference Committee

SESSION 1 FIBER LASERS

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 02</td>
<td>Recent advances on pumping schemes for mid-IR PCF lasers (Invited Paper) [10100-1]</td>
</tr>
</tbody>
</table>

SESSION 2 LASERS

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 07</td>
<td>A performance study of Nd-based stoichiometric random lasers (Invited Paper) [10100-6]</td>
</tr>
<tr>
<td>10100 09</td>
<td>Ball-milled nano-colloids of rare-earth compounds as liquid gain media for capillary optical amplifiers and lasers [10100-8]</td>
</tr>
<tr>
<td>10100 0B</td>
<td>Optical properties and mechanisms in Cr³⁺,Bi³⁺-codoped oxide-based spinel nanoparticles [10100-10]</td>
</tr>
</tbody>
</table>

SESSION 3 RARE-EARTH DOPED MATERIALS

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 0C</td>
<td>Blue light emission from trivalent cerium doped in sol-gel silica glass [10100-11]</td>
</tr>
<tr>
<td>10100 0D</td>
<td>Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process [10100-12]</td>
</tr>
<tr>
<td>10100 0E</td>
<td>Yb-doped polarizing fiber [10100-13]</td>
</tr>
<tr>
<td>10100 0F</td>
<td>Metal-to-metal charge transfer band position control and luminescence quenching by cationic substitution in NaNbO₃:Pr³⁺ [10100-14]</td>
</tr>
</tbody>
</table>

SESSION 4 OPTICAL DEVICES

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 0H</td>
<td>Electro-optic KTN deflector stabilized with 405-nm light irradiation for wavelength-swept light source [10100-16]</td>
</tr>
<tr>
<td>10100 0I</td>
<td>An ultra-fast optical shutter exploiting total light absorption in a phase change material [10100-17]</td>
</tr>
<tr>
<td>10100 0L</td>
<td>Sidelobe considerations in AOTF imaging [10100-21]</td>
</tr>
<tr>
<td>10100 0M</td>
<td>Three types of immersion grating for next-generation infrared spectrometer [10100-22]</td>
</tr>
</tbody>
</table>
SESSION 5 SENSORS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 N</td>
<td>Liquid polymeric materials for optical nano-bio sensing (Invited Paper)</td>
<td>23</td>
</tr>
<tr>
<td>10100 P</td>
<td>Fiber Bragg grating regeneration modeling and ultra-wide temperature sensing application</td>
<td>25</td>
</tr>
<tr>
<td>10100 Q</td>
<td>Rare-earth-doped chalcogenide glasses for mid-IR gas sensor applications</td>
<td>26</td>
</tr>
<tr>
<td>10100 R</td>
<td>Upconversion emission of erbium-doped lanthanum oxy sulfide powders for temperature sensing</td>
<td>27</td>
</tr>
<tr>
<td>10100 S</td>
<td>Optimized design of a nanocomposite Ta<sub>2</sub>O<sub>5</sub> and Pd multilayer OFSPR H<sub>2</sub> sensor: a theoretical analysis</td>
<td>28</td>
</tr>
</tbody>
</table>

SESSION 6 WAVEGUIDE DEVICES

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 T</td>
<td>Integrated optic waveguides in gallium lanthanum sulfide glass for mid-IR applications</td>
<td>29</td>
</tr>
<tr>
<td>10100 V</td>
<td>Waveguide structures in anisotropic nonlinear crystals</td>
<td>32</td>
</tr>
</tbody>
</table>

SESSION 7 NOVEL FABRICATION PROCESSES

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 X</td>
<td>Novel optical technique for 2D graphene reduction</td>
<td>37</td>
</tr>
<tr>
<td>10100 Y</td>
<td>Thermal conductivity investigation of Adhesive-Free Bond laser components</td>
<td>38</td>
</tr>
</tbody>
</table>

SESSION 8 INFRARED MATERIALS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 Z</td>
<td>Nonlinear glasses-based microstructured or step-index optical fibers: mid-IR supercontinuum generation and IR spectroscopy applications (Invited Paper)</td>
<td>39</td>
</tr>
<tr>
<td>10100 A</td>
<td>Fastening the amorphization process of chalcogenide glasses by mechanical alloying (Invited Paper)</td>
<td>42</td>
</tr>
<tr>
<td>10100 B</td>
<td>IRG 27: a “new” glass type for multi-band IR optics</td>
<td>44</td>
</tr>
</tbody>
</table>

SESSION 9 SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100 D</td>
<td>Temperature dependence of gain in a highly stacked quantum-dot semiconductor optical amplifier</td>
<td>45</td>
</tr>
<tr>
<td>10100 E</td>
<td>633-nm single-mode laser diode module with PM fiber output</td>
<td>46</td>
</tr>
<tr>
<td>10100 F</td>
<td>CMOS SiPM with integrated amplifier</td>
<td>48</td>
</tr>
</tbody>
</table>
Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency

SESSION 10 MICROSTRUCTURES AND NANO MATERIALS

1. **1B**
 Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency [10100-49]

2. **1D**
 Tailoring the optical properties of one-dimensional (1D) photonic structures (Invited Paper) [10100-51]

3. **1G**
 Mid- and far-infrared optical characterization of monoclinic HfO2 nanoparticles and evidence of localized surface phonon polaritons [10100-54]

PASSIVE FIBER DEVICES

1. **1I**
 Coherent supercontinuum in a silicate glass composite fiber with all-normal dispersion [10100-56]

2. **1J**
 Fatigue behavior of polyimide coated optical fibers at elevated temperatures [10100-57]

3. **1K**
 Elastic stability of a dual-coated fiber optic connector [10100-58]

POSTER SESSION

1. **1M**
 Optimization of the parameters of space-based mirrors [10100-19]

2. **1N**
 Highly nonlinear chalcogenide hybrid microstructured optical fibers with buffer layer and their potential performance of supercontinuum generation [10100-40]

3. **1O**
 Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber [10100-60]

4. **1P**
 Nano-photonic chemical sensor using rare-earth upconversion phosphors [10100-61]

5. **1Q**
 PMMA microlens array fabricated by indentation process [10100-62]

6. **1T**
 Spectroscopic and photothermal characterization Er-doped phosphate glass [10100-65]

7. **1U**
 Determination of nonlinear optical properties by time resolved Z-scan in Nd-doped phosphate glass [10100-66]

8. **1V**
 Study of the thermal-optics parameters of Nd3+-doped phosphate glass as a function of temperature [10100-67]

9. **1W**
 White-light emission characteristics of rare-earth ion-doped sodium borate glass [10100-70]

10. **1X**
 Backside-incidence critically coupled Ge on SOI photodetector [10100-71]

11. **1Y**
 Luminescent properties and phase transition in Er3+-Yb3+-co-doped NaYF4/SiO2 core-shell nanoparticles [10100-72]
Experimental observation of stimulated Raman scattering in a fluoride fiber [10100-73]

Mid-infrared rogue wave generation in chalcogenide fibers [10100-74]

Mid-infrared supercontinuum generation in chalcogenide multi-step index fibers with normal chromatic dispersion [10100-75]

Liquid temperature measurements with a grism and a constant deviation prism [10100-78]

Photocurrent enhancement in nanocoatings of cerium oxide and platinum on black silicon [10100-81]

An innovative single development process for integrated optical Mach-Zehnder interferometer pattern transfer [10100-82]

Double spacing multi-wavelength Brillouin Raman fiber laser of eight-shaped structure utilizing Raman amplifier [10100-83]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdul Wahid, Mohamad Halim, 27, 28
Adam, J.-L., 02
Ahmad Hambali, Nor Azura Malini, 27, 28
Ahmed, Samah M., 0X
Aka, G., 0D
Akahane, Kouichi, 17
Andrade, A. A., 1T, 1U, 1V
Ari, J., 0Q
Arriandiaga, M. Angeles, 0R
Azaidin, M. A. M., 28
Azkargorta, Jon, 07
Badr, Y., 0X
Balda, Rolindes, 07, 0R
Barnini, A., 0D
Beiley, Zach M., 1B
Bellingeri, Michele, 1D
Bi, Wanjun, 1I
Binet, Laurent, 0B
Bishay, I. K., 0X
Blockmon, Avery, 09, 1P
Blume, G., 18
Bonhomme, Christian, 0B
Bouchan, T., 0E
Boussard-Plédel, C., 0Q
Braud, A., 0Q
Brockherde, Werner, 1A
Bureau, B., 0Q
Butova, D. V., 1M
Cadier, B., 0D
Calixto, Sergio, 24
Calvez, Laurent, 14
Camy, P., 0Q
Cassi, Davide, 1D
Castaing, V., 0F
Caurant, D., 0D
Chahal, R., 0Q
Chaneac, Corinne, 0B
Chen, Bo, 1B
Chen, Danping, 1I
Chen, Hui-Wen, 1X
Chen, Li, 1O
Chen, Xiangcai, 1O
Cheng, Szu-Lin, 1X
Cheng, Tonglei, 1I, 1O, 1Y, 1Z
Chiasera, Alessandro, 1D
Cirino, Giuseppe A., 1Q
Coelho-Diogo, Cristina, 0B
Cooper, L. J., 0E
Criante, Luigino, 1D
Dahal, Pabitra, 26
Dantas, N. O., 1T, 1U, 1V
Darwish, Abdalla M., 09, 1P
Davis, Mark J., 16
de Lima, W. J., 1U
de Souza, J. M., 1U
Della Valle, Giuseppe, 1D
Désévédavy, Frédéric, 12
Dominguez, Owen, 1G
Doualan, J.-L., 0Q
Downes, F., 0S
Dyer, Robert S., 1J
Edwards, Vernessa M., 1W
Emamruugu, Elangovan, 26
Elsaid, Enayat A., 0X
Eppich, B., 18
Falconi, M. C., 02
Favero, F. C., 0E
Feise, D., 18
Fernández, Joaquín, 07, 0R
Ferrari, Maurizio, 02, 1D
Filho, J. C., 1V
Freysher, A. G., 1M
Froidevaux, Paul, 12
Fujimoto, Masatoshi, 0H
Fukae, Yuu, 17
Gadret, Grégory, 12
Gao, WeiQing, 1I, 1O, 1Y, 1Z
Garan, Jacob, 0N
Gillooly, A., 0E
Gotter, T., 0D
Gourier, Didier, 0B
Guiltton, P., 0D
Guo, L. Jay, 0I
Gupta, Neelam, 0L
Guyon, C., 0D
Hakme, Noha, 0R
Hanett, Erin, 1B
Hill, M., 0E
Hoffman, Anthony J., 1G
Hong, Pengda, 0V, 1I
Hoslicka, Bedrich J., 1A
Hu, Lüli, 1I
Huang, Lei, 1J
Idris, NurulBariah, 27
Imai, Tadayuki, 0H
Iparraguirre, Ignacio, 07
Jafari, Mohsen, 0I
James, William III, 16
Jasinevicius, Renato G., 1Q
Jedamzik, Ralf, 16
Jedrzejczyk, D., 18
Jin, Wei, 0P
Jules, Jean-Charles, 12
Katayama, Y., 0F
Kawabe, Yukata, 0C
Khor, Kang Nan, 27
Kibler, Bertrand, 12
Kolli, Naveen, 1B
Kriegel, Ilka, 1D
Kuznetsov, Andrey, 1B
Lau, Kuen Yau, 27
Laurent, A., 0D
Ledemi, Y., 0Q
Lee, Ming-Chang M., 1X
Leisching, P., 18
Lemière, Arnaud, 12
Lewis, Ashley, 09
Lewis, Danielle, 09
Li, Da, 0V, 11
Li, Jiang, 1I
Li, L., 0F
Li, Xia, 1O
Liao, Meisong, 1I
Liggins, Kristopher, 1W
Lin, Chun-Chi, 1X
Liu, Han-Din, 1X
Liu, Lai, 20, 21
Liu, Yu-Huan, 1X
Lourenço, S. A., 1V
Lu, Lin, 0P
Madin, M. Sya’aer, 28
Martins, V. M., 1T
Matsumoto, Atsushi, 17
Matsumoto, Morio, 21
McGinnity, Tracie L., 1G
McLeod, Euan, 0N
Meissner, Helmuth E., 0V, 11
Melter, Jeffrey E., 0N
Merdignac-Conanec, Odile, 0R
Messaddeq, Y., 0Q
Messias, D. N., 1T, 1U, 1V
Michel, K., 0Q
Mohamad Shahimin, Mukhzeer, 27, 28
Montes-Pérez, Areli, 24
Montron, R., 0D
Murakami, Yukon, 0C
Myers, J. D., 0T
Na, Neil, 1X
Nagasaka, Kenshiro, 1N, 20, 21
Nazabal, V., 02, 0Q
Nguyen Phuc, Trung Hoa, 1N
Ni, Chenquan, 1O
Nüeleke, C., 18
Novikova, Anna, 14
Ochieng, Vanesa, 09, 1P
Oda, Hisaya, 0C
Ohishi, Yasutake, 11, 1N, 1O, 1Y, 1Z, 20, 21
Okura, Yukinobu, 0M
Orekhova, M. K., 1M
Palma, G., 02
Paschke, K., 18
Patel, Darayas N., 09, 1P
Pattantyus-Abraham, Andras, 18
Pellerin, Morgane, 0B
Peng, M., 0F
Pereira, Dionisio, 26
Picot-Clément, Jérémy, 12
Pilla, V., 1T, 1U, 1V
Pinsard, E., 0D
Pohl, J., 18
Potapov, Alexander, 14
Prudenzano, F., 02
Quétel, L., 0Q
Rais-Zadeh, Mina, 01
Rampori, Roberta, 1D
Read, D., 0E
Reddy, B. Rami, 1W
Retnasamy, Vithyacharan, 27
Righini, Giancarlo C., 1D
Robin, T., 0D
Roeder, Ryan K., 1G
Rosete-Aguilar, Martha, 24
Roshidah, N., 28
Rytz, D., 0F
Sadallah, F. A., 0X
Sahm, A., 18
Sakamoto, Tadashi, 0H
Sakamoto, Takashi, 0H
Sanghera, E., 0T
Sargent, Edward H., 1B
Sarkisov, Avedik S., 09, 1P
Sarkisov, Sergey S., 09, 1P
Sasaki, Yuzo, 0H
Schwinger, Alexander, 1A
Scotognella, Francesco, 1D
Shaw, L. B., 0T
Silva, A. C. A., 1V
Smektala, Frédéric, 12
Sontakke, A. D., 0F
Sotobayashi, Hideyuki, 17
Starecki, F., 02, 0Q
Strulynski, Clément, 12
Sugai, Eiichi, 0H
Suhir, E., 1K
Suhre, Dennis R., 0L
Sukegawa, Takashi, 0M
Suzuki, Takenobu, 1N, 1O, 1Y, 1Z, 20, 21
Swillam, Mohamed A., 0X
Tacchella, S., 0Z
Tanabe, Setsuhisa, 0B, 0F
Taylor, C., M., 0S
Tezuka, Hiroshige, 21
Conference Committee

Symposium Chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Centre, University of Southampton (United Kingdom)

Program Track Chair

James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs

Shibin Jiang, AdValue Photonics, Inc. (United States)
Michel J. F. Digonnet, Stanford University (United States)

Conference Program Committee

Jean-Luc Adam, Université de Rennes 1 (France)
Joel Bagwell, Edmund Optics Inc. (United States)
Rolindes Balda, Universidad del País Vasco (Spain)
Robert P. Dahlgren, CSUMB/NASA Ames Research Center (United States)
Leonid B. Glebov, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
Seppo K. Honkanen, University of Eastern Finland (Finland)
Jacques Lucas, Université de Rennes 1 (France)
Yasutake Ohishi, Toyota Technological Institute (Japan)
Aydogan Ozcan, University of California, Los Angeles (United States)
Giancarlo C. Righini, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi (Italy)
Setsuhisa Tanabe, Kyoto University (Japan)
John M. Zavada, National Science Foundation (United States)
Session Chairs

1. Fiber Lasers
 Stefano Taccheo, Swansea University (United Kingdom)

2. Lasers
 Shibin Jiang, AdValue Photonics, Inc. (United States)

3. Rare-Earth Doped Materials
 Shibin Jiang, AdValue Photonics, Inc. (United States)

4. Optical Devices
 Leonid B. Glebov, CREOL, The College of Optics and Photonics, University of Central Florida (United States)

5. Sensors
 Michel J. F. Digonnet, Stanford University (United States)

6. Waveguide Devices
 Jun Zhang, U.S. Army Research Laboratory (United States)

7. Novel Fabrication Processes
 Frédéric Smektala, Laboratoire Interdisciplinaire Carnot de Bourgogne (France)

8. Infrared Materials
 Johann Troles, Université de Rennes 1 (France)

9. Semiconductors
 Rolindes Balda, Universidad del País Vasco (Spain)

10. Microstructures and Nano Materials
 Rafael Gattass, U.S. Naval Research Laboratory (United States)

11. Passive Fiber Devices
 Joel Bagwell, Edmund Optics Inc. (United States)