Earth Observing Systems XXI

James J. Butler
Xiaoxiong (Jack) Xiong
Xingfa Gu
Editors

30 August–1 September 2016
San Diego, California, United States

Sponsored and Published by
SPIE
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510603356

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

• The first four digits correspond to the SPIE volume number.
• The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-12, 20-22, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
Contents

SESSION 1 SYSTEM AND SUBSYSTEM INSTRUMENT PRELAUNCH CALIBRATION

9972 02 Development of low optical cross talk filters for VIIRS (JPSS) [9972-1]
9972 03 JPSS-1 VIIRS version 2 at-launch relative spectral response characterization and performance [9972-2]
9972 04 Improved thermal-vacuum compatible flat plate radiometric source for system-level testing of remote optical sensors [9972-3]
9972 05 Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing [9972-4]
9972 06 Results from source-based and detector-based calibrations of a CLARREO calibration demonstration system [9972-5]
9972 07 Advanced Topographic Laser Altimeter System (ATLAS) Receiver Telescope Assembly (RTA) and transmitter alignment and test [9972-6]

SESSION 2 INFRARED INSTRUMENTS

9972 08 Recent checks on the radiometric and spatial calibration of AIRS in-orbit [9972-7]
9972 09 Comparison of the AIRS, IASI, and CrIS 900 cm⁻¹ channel for Dome Concordia [9972-9]
9972 0A Tropical SNO comparisons of AIRS and CrIS calibration for windows [9972-10]

SESSION 3 LANDSAT

9972 0C Landsat-7 ETM+ radiometric calibration status [9972-12]
9972 0D Radiometric calibration updates to the Landsat collection [9972-13]
9972 0F Performance of the proposed stray light correction algorithm for the Thermal Infrared Sensor (TIRS) onboard Landsat 8 [9972-15]
9972 0G Landsat 9: status and plans [9972-16]
SESSION 4 ALGODONES FIELD CAMPAIGN

9972 0J Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data [9972-19]

9972 0K Modeling geophysical properties of the Algodones Dunes from field and laboratory hyperspectral goniometer measurements using GRIT and comparison with G-LiHT imagery [9972-20]

9972 0L The opposition effect and its relationship to sediment density in BRDF measurements from the Algodones Sand Dunes System [9972-21]

9972 0M The characterization of a DIRSIG simulation environment to support the inter-calibration of spaceborne sensors [9972-22]

SESSION 5 NEW ON-ORBIT MISSIONS AND INSTRUMENTS

9972 0N Sentinel 2A: the image quality performances at the beginning of the mission [9972-23]

9972 0O Results from the radiometric validation of Sentinel-3 optical sensors using natural targets [9972-24]

9972 0P The calibration of the DSCOVR EPIC multiple visible channel instrument using MODIS and VIIRS as a reference [9972-25]

9972 0Q The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement [9972-26]

9972 0R Characterization of Himawari-8 AHI 3.9-µm channel stray light [9972-28]

SESSION 6 GOES-R

9972 0S Detector level ABI spectral response function: FM4 analysis and comparison to other ABI modules [9972-29]

9972 0T Avoiding stair-step artifacts in image registration for GOES-R navigation and registration assessment [9972-30]

9972 0U Initial design and performance of the near surface unmanned aircraft system sensor suite in support of the GOES-R field campaign [9972-31]

9972 0V Towards post-launch validation of GOES-R ABI SI traceability with high-altitude aircraft, small near surface UAS, and satellite reference measurements [9972-32]

SESSION 7 MODIS

9972 0W Improvement in the characterization of MODIS subframe difference [9972-34]
ASSESSMENTS AND APPLICATIONS OF TERRA AND AQUA MODIS ON-ORBIT ELECTRONIC CALIBRATION [9972-35]

CROSSTALK EFFECT AND ITS MITIGATION IN THERMAL EMISSIVE BANDS OF REMOTE SENSORS [9972-36]

IMPROVEMENT IN THE CLOUD MASK FOR TERRA MODIS MITIGATED BY ELECTRONIC CROSSTALK CORRECTION IN THE 6.7 μm AND 8.5 μm CHANNELS [9972-37]

ASSESSMENT OF MODIS ON-ORBIT CALIBRATION USING A DEEP CONVECTIVE CLOUD TECHNIQUE [9972-38]

SESSION 8 ALGORITHMS AND DATA PROCESSING

SURFACE WIND SPEED ESTIMATION OVER OPEN OCEAN USING BIDIRECTIONAL OBSERVATION BY SENTINEL-2/MSI AND LANDSAT-8/OLI [9972-39]

INTEGRATED APPROACH USING MULTI-PLATFORM SENSORS FOR ENHANCED HIGH-RESOLUTION DAILY ICE COVER PRODUCT [9972-68]

SESSION 9 FUTURE MISSIONS AND INSTRUMENTS

STATUS OF ESA’S EARTH CARE MISSION, PASSIVE INSTRUMENTS PAYLOAD [9972-41]

DEVELOPMENT STATUS OF THE EARTH CARE MISSION AND ITS ATMOSPHERIC LIDAR [9972-42]

AN UPDATE ON EUMETSAT PROGRAMMES AND PLANS [9972-43]

CALIBRATION TECHNIQUES FOR THE NASA ICON EXTREME ULTRAVIOLET SPECTROGRAPH (EUV) [9972-45]

SESSION 10 SNPP AND JPSS VIIRS I

FUNCTIONAL FORM OF THE RADIOMETRIC EQUATION FOR THE SNPP VIIRS REFLECTIVE SOLAR BANDS: AN INITIAL STUDY [9972-46]

VIIRS REFLECTIVE SOLAR BANDS ON-ORBIT CALIBRATION FIVE-YEAR UPDATE: EXTENSION AND IMPROVEMENTS [9972-48]

TRACKING ON-ORBIT STABILITY OF THE RESPONSE VERSUS SCAN ANGLE FOR THE S-NPP VIIRS REFLECTIVE SOLAR BANDS [9972-49]

SESSION 11 SNPP AND JPSS VIIRS II

PRODUCT OF THE SNPP VIIRS SD SCREEN TRANSMITTANCE AND THE SD BRDF (RSB) FROM BOTH YAW MANEUVER AND REGULAR ON-ORBIT DATA [9972-50]

AN EXPOSITION ON THE SOLAR DIFFUSER DEGRADATION NON-UNIFORMITY EFFECT FOR SNPP VIIRS AND TERRA/AQUA MODIS [9972-51]
<table>
<thead>
<tr>
<th>Session 12: SNPP and VIIRS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>9972 1H</td>
</tr>
<tr>
<td>9972 1I</td>
</tr>
</tbody>
</table>

POSTER SESSION

9972 1N	An improved Overhauser magnetometer for Earth’s magnetic field observation [9972-60]
9972 1O	Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload [9972-61]
9972 1Q	Optimization of the precise uniform light source based on optically connected integrating spheres [9972-63]
9972 1R	Radiometric evaluation of the SNPP VIIRS reflective solar band sensor data records via inter-sensor comparison with Aqua MODIS [9972-64]
9972 1S	A linear signal transmission system calibration method of wideband GPR [9972-65]
9972 1U	Evaluation of GLAMR-based calibration for SI-traceable field reflectance retrievals [9972-67]
9972 1V	Calibration improvements in the detector-to-detector differences for the MODIS ocean color bands [9972-33]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ambeau, Brittany L., 0K, 0L, 0M
Angal, Amit, 06, 0W, 10, 1U, 1V
Aumann, Hartmut H., 09, 0A
Averin, Dmitriy, 1Q
Bachmann, Charles M., 0K, 0L
Badura, Gregory, 0K, 0L
Barsi, Julia A., 0C, 0G
Beaver, Jason, 0J
Besson, Bruno, 00
Bhatt, Rajendra, 0P, 10
Blonski, Slawomir, 1M
Bolcar, Matthew, 07
Bonev, George, 13
Borovitsky, Volodymyr, 1Q
Bouquet, Robert, 04
Bouvet, Marc, 00
Broberg, Steven E., 08
Brown, Steven W., 04
Bruniquel, Véronique, 00
Butler, James J., 05
Cao, Changyong, 0U, 0V, 1C, 1I, 1J, 1M
Cao, Qiong, 1N, 1S
Carbone, Dave, 02
Chambers, John, 07
Chang, Jin-Soo, 1O
Chang, Tiejun, 10
Chen, Na, 0W, 0X
Chen, Shudong, 1N
Choi, Taeyoung, 1J
Chu, Mike, 1E, 1R
Coburn, Craig A., 0J
Cooksey, Catherine, 05
Crane, Allen, 07
Curtis, James, 18
Czapla-Myers, Jeffrey S., 0C
Dabney, Phil, 0G
Dellomo, John, 0T
De Luccia, Frank J., 0T
Desjardins, Camille, 0O
Ding, Leibo, 05
Doelling, David R., 0P, 10
Downing, Kevin, 02
Edelstein, Jerry, 18
Egholm, Bente, 07
Efremova, Boryana, 0S
Eisinger, Michael, 14, 15
Elliott, Denis, 09
Evans, Tyler, 07
Fan, Shifang, 1N
Fougnie, Bertrand, 0O, 11
Gaudel-Vacaressa, A., 0N
Geng, Xu, 0W, 1V
Georgiev, Georgi T., 05
Gerace, Aaron D., 0F, 0M
Gibson, Steven R., 18
Gladkova, Irina, 13
Goodman, Steve, 0U, 0V
Gopalan, Arun, 0P
Griffo, Carrie, 0K, 0L
Grossberg, Michael, 13
Gryciewicz, Thomas J., 0T
Gu, Ling-jia, 1S
Gu, Yalong, 1I
Guo, Xin, 1N
Hagolle, Olivier, 11
Hagopian, John, 07
Haney, Conor, 0P
Haque, Md, Obaidul, 0C, 0D
Harms, Justin, 0K, 0L
Helder, Dennis L., 0C
Hellrich, Sean, 13
Hélière, Arnaud, 14, 15
Hendry, Derek, 02
Hetherington, Samuel, 07
Holmlund, Kenneth, 16
Hook, Simon J., 0C
Isaacson, Peter J., 0T
Ishikawa, Yuzu, 18
Jenstrom, Del, 0G
Kang, Myung-Seok, 1O
Kent, Craig J., 04
Kim, Jongun, 1O
Klaes, K. Dieter, 16
Korpela, Eric, 18
Lachérade, Sophie, 0N, 11
Languille, F., 0N
Lee, Minwoo, 10
Lefebvre, Alain, 14, 15
Lei, Ning, 19, 1D
Li, Xiao-feng, 15
Liu, Yonghong, 0W, 0X, 1V
Lin, Guoqing [Gary], 1K, 1L
Link, Daniel, 0W, 10, 1V
Logie, Gordon, 0J
Lonjou, V., 0N
Madhavan, S., 0Y, 0Z
Manning, Evan M., 09, 0A
Markham, Brian L., 0C, 0G
Conference Committee

Program Track Chair

Allen H.-L. Huang, University of Wisconsin-Madison (United States)

Conference Chairs

James J. Butler, NASA Goddard Space Flight Center (United States)
Xiaoxiong (Jack) Xiong, NASA Goddard Space Flight Center (United States)
Xingfa Gu, Institute of Remote Sensing Applications (China)

Conference Program Committee

Philip E. Ardanuy, Raytheon Intelligence & Information Systems (United States)
Hal J. Bloom, Science & Technology Corporation (United States)
Jeffrey S. Czapla-Myers, College of Optical Sciences, The University of Arizona (United States)
Armin Doerry, Sandia National Laboratories (United States)
Christopher N. Durell, Labsphere, Inc. (United States)
Bertrand Fougnie, Centre National d’Études Spatiales (France)
Mitchell D. Goldberg, National Environmental Satellite, Data, and Information Service (United States)
Joel McCorkel, NASA Goddard Space Flight Center (United States)
Thomas S. Pagano, Jet Propulsion Laboratory (United States)
Jeffery J. Puschell, Raytheon Space & Airborne Systems (United States)
Carl F. Schueler, Schueler Consulting-Santa Barbara (United States)
Mark A. Schwarz, Stellar Solutions Inc. (United States)

Session Chairs

1. System and Subsystem Instrument Prelaunch Calibration
 Christopher N. Durell, Labsphere, Inc. (United States)

2. Infrared Instruments
 Armin W. Doerry, Sandia National Laboratories (United States)

3. Landsat
 Bertrand Fougnie, Centre National d’Études Spatiales (France)

4. Algodones Field Campaign
 Joel McCorkel, NASA Goddard Space Flight Center (United States)
5 New On-orbit Missions and Instruments
Jeffery J. Puschell, Raytheon Space and Airborne Systems
(United States)

6 GOES-R
James J. Butler, NASA Goddard Space Flight Center (United States)

7 MODIS
Thomas S. Pagano, Jet Propulsion Laboratory (United States)

8 Algorithms and Data Processing
Xiaoxiong J. Xiong, NASA Goddard Space Flight Center
(United States)

9 Future Missions and Instruments
Philip E. Ardanuy, Raytheon Intelligence & Information Systems
(United States)

10 SNPP and JPSS VIIRS I
Mark A. Schwarz, Stellar Solutions Inc. (United States)

11 SNPP and JPSS VIIRS II
Joel McCorkel, NASA Goddard Space Flight Center (United States)

12 SNPP and VIIRS III
James J. Butler, NASA Goddard Space Flight Center (United States)